Honeywell

MAINTENANCE MANUAL

BENDIX/KING ${ }^{\circledR}$

KI 525
PICTORIAL NAVIGATION INDICATOR

MANUAL NUMBER 006-15620-0007 REVISION 7 JULY, 2001

WARNING
Prior to the export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE

©1976-2001 Honeywell International Inc.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell is prohibited. For further information contact the manager, Technical Publications, Honeywell, One Technology Center, 23500 West 105th Street Olathe KS 66061 telephone: (913) 712-0400.

Honeywell

MAINTENANCE MANUAL

BENDIX/KING

KI 525

PICTORIAL NAVIGATION INDICATOR

The binder(s) required to hold this publication(s) are available at an additional cost and may be ordered from:

Honeywell
One Technology Center 23500 West 105th Street
Olathe, Kansas, 66061
Telephone 1-800-757-8999

Orders must specify part number, description, and the quantity. Use the following list to complete the order

PART NUMBER

006-03140-0001 (1) inch Binder.
006-03140-0002
006-03140-0003
006-03140-0004
(1.5) inch Binder.
(2) inch Binder.
(3) inch Binder.

006-03140-0005

WARNING
Prior to the export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE

©1976-2001 Honeywell International Inc.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell is prohibited. For further information contact the manager, Technical Publications, Honeywell, One Technology Center, 23500 West 105th Street Olathe KS 66061 telephone: (913) 712-0400.

REVISION HISTORY

KI 525 Maintenance Manual
Part Number: 006-15620-XXXX
For each revision, add, delete, or replace pages as indicated.
REVISION No. 7, July 2001

ITEM	ACTION
All pages	Full Reprint, new manual

Revision 7 creates a new stand-alone manual for the KI 525 which was extracted from revision 6 of the KCS 55/55A maintenance manual, (P/N 006-05111-0006). Any revisions to the KI 525, beginning with revision 7 , will not be a part of the KCS 55/55A manual.

THIS PAGE IS RESERVED

TABLE OF CONTENTS

SECTION IV

 THEORY OF OPERATIONPARAGRAPH PAGE
4.1 General Information 4-1
4.2 Heading Display Card 4-1
4.3 GS Pointer 4-2
4.3.1 GS Pointer Detailed Operation 4-3
4.3.2 GS Retract Circuit 4-4
4.4 NAV Flag Circuit 4-10
4.5 Power Flag 4-10
4.6 Heading Select and Course Datum Pickoff Assemblies 4-10
4.7 NAV Deviation and To-From Indicators 4-11
SECTION V MAINTENANCE
PARAGRAPH PAGE
5.1 Introduction 5-1
5.2 Test and Alignment 5-1
5.2.1 General Requirements 5-1
5.2.2 Test Equipment 5-1
5.2.3 Calibration Procedure 5-2
5.2.4 Final Test Procedure 5-3
5.3 Overhaul 5-15
5.3.1 Visual Inspection 5-15
5.3.2 Cleaning 5-16
5.3.3 Repair 5-21
5.3.4 Disassembly Procedures 5-25
5.4 Troubleshooting 5-28

SECTION VI
 ILLUSTRATED PARTS LIST

PARAGRAPH PAGE
6.1 General 6-1
6.2 Revision Service 6-1
6.3 List of Abbreviations 6-1
6.4 Sample Parts List 6-3
6.5 KI 525 Final Assembly 6-5
6.6 KI 525 Bezel Assembly 6-11
6.7 KI 525 Front Display Assembly 6-17
6.8 KI 525 Front Frame Assembly 6-27
6.9 KI 525 Heading Select Gear Assembly 6-33
6.10 KI 525 Heading Gear Set Assembly 6-39
6.11 KI 525 Synchro Plate Assembly 6-43
6.12 KI 525 Yoke Assembly 6-49
6.13 KI 525 Differential Carrier Assembly 6-55
6.14 KI 525 Flag Mechanism Assembly 6-61
6.15 KI 525 Flag Assembly 6-71
6.16 KI 525 Rear Plate Assembly 6-83
6.17 KI 525 P.C. Board 6-89
6.18 KI 525 Glideslope Plate Assembly 6-103
LIST OF ILLUSTRATIONS
FIGURE PAGE
4-1 Stepper Motor Drive Circuit 4-1
4-2 GS Pointer Mechanism 4-2
4-3 Glideslope Deviation Input Circuitry 4-3
4-4 Glideslope Deviation Servo Loop 4-5
4-5 Glideslope Position Feedback Sensor 4-7
4-6 Glideslope Retract Circuitry 4-9
4-7 NAV Flag Circuitry 4-9
4-8 Course Datum Pickoff Assembly 4-13
4-9 Center Yoke with Nav and To-From Brush Assembly 4-15

LIST OF ILLUSTRATIONS (cont).

FIGURE PAGE
5-1 Glideslope Assembly Calibration 5-13
5-2 KI 525 Troubleshooting Flow Chart 5-29
6-1 Sample Parts List 6-3
6-2 KI 525 Final Assembly 6-7
6-3 KI 525 Bezel Assembly 6-13
6-4 KI 525 Front Display Assembly 6-19
6-5 KI 525 Front Frame Assembly 6-29
6-6 KI 525 Heading Select Gear Assembly 6-35
6-7 KI 525 Heading Gear Set Assembly 6-41
6-8 KI 525 Synchro Plate Assembly 6-45
6-9 KI 525 Yoke Assembly 6-51
6-10 KI 525 Differential Carrier Assembly 6-57
6-11 KI 525 Flag Mechanism Assembly (300-00819-0000) 6-63
6-12 KI 525 Flag Mechanism Assembly (300-00819-0001) 6-67
6-13 KI 525 Flag Assembly (300-05545-0000) 6-73
6-14 KI 525 Flag Assembly (300-00838-0000) 6-75
6-15 KI 525 Flag Assembly (300-00838-0001) 6-79
6-16 KI 525 Rear Plate Assembly 6-85
6-17 KI 525 P.C. Board Assembly 6-95
6-18 KI 525 P.C. Board Schematic 6-99
6-19 KI 525 Glideslope Plate Assembly 6-105

THIS PAGE IS RESERVED

SECTION IV THEORY OF OPERATION

4.1 GENERAL INFORMATION

4.1.1
 GENERAL DESCRIPTION

The KI 525 Pictorial Navigation Indicator consists of several functional sections. These include digitally driven heading display card, course datum and heading select optically derived autopilot outputs, a servo driven glideslope pointer using an optical position sensor, a glideslope retract circuit to detect an invalid GS signal, a NAV flag circuit that monitors NAV receiver power and video signal level, a system power flag along with the normal course deviation bar, TO-FROM meter, slaving CT, heading transmitter (on 066-03029-0001 units only) and course resolver.

4.2 HEADING DISPLAY CARD

A digital stepper motor is used to drive the heading display card in response to signals generated in the KG 102 directional gyro. These signals consist of a two phase excitation drive that is connected to the four stepper motor leads as shown in Figure 4-1.

FIGURE 4-1 STEPPER MOTOR DRIVE CIRCUIT
Each time the A or B waveforms change state, the motor shaft moves nine degrees in a direction determined by the previous state of the A and B waveforms. This motion is reduced to $1 / 4$ degree card rotation by a 36:1 gear train assembly.

4.3 G.S. POINTER

Operation of the GS pointer is based on the repulsion of a permanent magnet by an electromagnetic field. The mechanism used to operate the pointer is shown in Figure 4-2. In the quiescent, power off condition, the north and south poles of the circular magnet, which are rigidly attached to the pointer assembly, are attracted to the metal pole pieces at A and B respectively. This attraction causes the pointer to deflect upward behind the front bezel and out of sight. Therefore, the GS invalid signal needs only to remove the pointer drive signal in order to remove the pointer from view.

FIGURE 4-2 GS POINTER MECHANISM

4.3.1 GS POINTER DETAILED OPERATION

The glideslope deviation signal is connected to the KI 525 at pins B and E on the lower connector and from there to the P.C. board where resistors R139, R140 and R138 present a standard 1K ohm load to the receiver. (See Figure 4-3). These resistors are connected to differential amplifier 1103A where a gain of approximately sixty is achieved. From there, the signal passes through resistor R142 and thence to amplifier I103B where it is filtered by the RC network of resistor R165 and capacitors C108 and C109. This filtered signal is limited to -8.7 v by the combination of forward biased diode CR107 and reverse biased zener diode CR114. This limiting action is required to prevent the GS pointer from deflection up out of view behind the retract shroud during normal operation. Only when a GS invalid signal is present will the pointer disappear from view.

After being amplified, filtered and limited, the command signal passes through resistor R166 to amplifier I105B where it enters the glideslope pointer servo loop. (Figure 4-4)

FIGURE 4-3 GLIDESLOPE DEVIATION INPUT CIRCUITRY

Any signal present at the input of I105B will result in a ramping voltage at the output, the rate of which is determined by the magnitude of the input voltage, resistor R160, and capacitors C101 and C102. Positive inputs result in a negative moving ramps and negative inputs result in positive moving ramps. This ramping voltage passes through resistor R159 to low-pass filter consisting of I 105A resistor R 156 and R 157 , and capacitor C 103. The output of 1105A is connected through R153 to Q109 which forms an emitter follower consisting of resistor R154 and the GS pointer excitation coil. Diode CR106 protects Q109 during the glideslope retract mode of operation and diode CR116 prevents large reverse voltages from developing across the coil when Q109 shuts off. (Figure 4-4).

As the current builds up in the GS excitation coil, poles A and B (Figure 4-2) become magnetized NORTH and SOUTH respectively. This creates a repulsive force on the circular magnet attached to the GS pointer causing it to deflect in a downward direction. This motion causes the infrared light beam generated by LED CR117 to move laterally across the face of dual photocell V101. (Figure 4-5). The lateral motion is caused by the offset slit in the glideslope pointer assembly as shown in the figure, the left side of the photocell will be illuminated to a greater degree than the right side causing the center top of the photocell to become positive. Amplifier I106B compares this voltage with a reference value at the junction of resistors R143 and R144 and is produced by the voltages at each end of the photocell. In this way, variations in the photocell excitation voltages will not result in an offset at the output of I106B. The combination of resistor R104 and zener CR105 produce the +10VDC photocell voltage, and R105 and CR110 produce the -10VDC photocell voltage. From the output of I106B, the signal passes to a lead circuit consisting of resistors R149, R150 and E151 and capacitors C105 and C106. From the output of I106A, the signal passes to another lead circuit consisting of resistors R161 and R162 and capacitors C104 and C107. These lead circuits are required to compensate for the inherent lag in the glideslope pointer assembly and the photocell. The signal at this point is negative, having been inverted by amplifier I106A and tends to cancel the positive voltage produced by the command signal from amplifier I103B discussed above. When this cancellation occurs, the glideslope pointer stops moving and displays the aircraft location relative to the glideslope beam.

4.3.2 GS RETRACT CIRCUIT (Figure 4-6)

As the glideslope signal becomes weaker, the valid signal at bottom connector pin J and top connector pin W begins to decrease. This valid signal from the glideslope receiver is connected to resistors R126, R127 and R125 which represent a 1000ohm load to the receiver. Amplifier 1104A increases the amplitude of the valid signal by approximately forty and drives a level sensing circuit consisting of resistors R129, R130, R131; capacitor C110 and amplifier I104B. Capacitor C110 provides negative rate feedback to cause the circuit to operate as an integrator when the output of I104A becomes more positive than the switching point of I104B. The switching level is established by resistors R129 and E130 at approximately -7. 8VDC. When reduced by a factor of forty, this switching level corresponds to a level of 0.195VDC at the glideslope receiver. Since amplifier I104A uses negative feedback, the output of this stage is negative, thus requiring the negative bias voltage on amplifier I104B. When the output of I104A exceeds -7 . 8VDC, amplifier I104B slowly changes state from +15VDC to -15VDC. While amplifier I104B is in the -15VDC condition, the glideslope receiver is invalid resulting in current flow through forward biased diode CR109 and resistor R134. This negative current will overwhelm any current through resistor R162 or R166 resulting from the photocell or command signal and cause amplifier I105B to saturate at +15VDC. This voltage will cause amplifier I105A to saturate at -15VDC and force transistor Q109 to shut off and allow the glideslope pointer to deflect up and out of view.
As the glideslope valid voltage exceeds 0 . 195VDC, amplifier 1104B will slowly switch to +15VDC causing diode CR109 to be reversed biased, preventing current from flowing through resistor R 134. In this configuration, the glideslope pointer will drop into view and conform to the glideslope deviation command signal.

FIGURE 4-4 GLIDESLOPE DEVIATION SERVO LOOP

THIS PAGE IS RESERVED

FIGURE 4-6 GLIDESLOPE RETRACT CIRCUITRY

FIGURE 4-7 NAV FLAG CIRCUITRY

4.4 NAV FLAG CIRCUIT (Figure 4-7)

The NAV valid signal originating at the VOR/LOC receiver is connected to pins K and F of the upper P. C. board. Resistor R123 provides a 1 Kohm load to the receiver. This signal then passes through resistors R121 and R122 to differential amplifier 1102A. Negative feedback is provided by resistor R117 which also established a gain of ONE for the stage. Since the amplifier is powered by a single ended power supply, i.e., +28 VDC or $\pm 14 \mathrm{VDC}$ to ground, the summing junctions at pins 2 and 3 of 1102A must be biased positive with respect to ground in order for the op-amp to function. This bias voltage is developed across zener diode CR108 in series with resistor R114 when using +28VDC power, and in series with resistor R115 when using +14VDC power. This +5 . 1VDC bias voltage is connected to pin 3 of 1102A through resistor R118 and thus causes the output at pin 1 to stabilize at +5.1 VDC also.
The FLAG input voltage level from the NAV receiver will be inverted by 1102A and will appear at pin I in direct proportion to the input voltage change. From pin 1, the signal passes through resistor R116 to pin 6 of I102B. This signal is compared to the bias reference on pin 5 of I102B generated by zener diode CR108. During the NAV invalid condition the input voltage is near zero and the output from 1102A pin 1 is nearly 5. IVDC. The voltage at pin 5 of I102B, however, is less than 5. 1VDC because of the voltage divider consisting of resistors R112 and R113. This causes the voltage to + pin 7 of I102B to switch to ground potential, removing the drive to transistor Q104 and providing a small amount of positive feedback to pin 5 of I102B through resistors R110 and RI1I. When the input voltage increases to approximately +0.21 VDC , the output of I102A will decrease to +4 . 9VDC which is less than the reference voltage on pin 5 . This will cause amplifier 1102B to switch from near ground potential to +14VDC or +28VDC depending upon the power supply magnitude. Zener diode CR104 prevents transistor Q104 from turning on when 1102B is low since the output of this stage may be as high as one or two volts. When 1102B switches high, CR104 breaks down in the reverse direction, providing base current for Q104. This results in collector current through the NAV flag coil in series with CRI02 for 14VDC operation and R109 and CRIC1 for 28VDC operation. As the current builds up in the NAV flag coil, the small circular magnet between the coil poles rotates, causing the NAV flag to move up and out of view behind the front bezel.

4.5 POWER FLAG

The power flag operates in the same manner as the NAV flag, in that current flowing through the coil generates a magnetic field opposing the field in the circular magnet to which the flag is attached. This opposition causes the magnet to rotate and position the PWR flag out of view behind the front bezel. When the +15 V unregulated supply from the KG 102 gyro drops below 2. OVDC, the attraction of the circular magnet poles to the pole pieces becomes greater than the repulsion force of the coil generated field-and results in a rapid rotation of the circular magnet to align with the pole pieces. This results in the reappearance of the PWR flag from behind the upper bezel.

4.6 HEADING SELECT AND COURSE DATUM PICKOFF ASSEMBLIES

Dual photo detectors V102 and V103 (figure 4-8) provide the DC outputs that correspond to the heading select and course datum signals respectively. A light beam from LED CRI15 illuminates V102, and CR111 illuminates V103. These light beams are partially interrupted by a shutter that rides on the heading select, or course datum cam attached to the center yoke assembly. (Figure $4-8)$. The horizontal slit in the shutter allows a narrow beam of light to fall on the photocell. This light causes a decrease in resistance of the photocell elements, but if both segments are equally exposed as shown in Figure 4-8B, the output voltage when measured against the mid point of resistor combination R135 and R136, will be zero. Resistors R135 and R136 provide the reference point for both pickoffs and prevents power supply variations from affecting the output voltage.

As the heading bug or course pointer is rotated clockwise, the shutter moves upward in response to the increasing cam radius. This results in greater exposure of the upper half of the dual photocell as shown in Figure 4-8A. A reduction in the resistance of this half unbalances the voltage divider and produces a positive output voltage between the photocell center top and the junction of resistors R 135 and R 136. As the heading bug or course pointer is rotated counterclockwise, the shutter moves downward, exposing the bottom half of the photocell. (figure 4-8). This results in a negative output voltage between the photocell center top and the junction of resistors R 135 and R 136.
Rotation of the heading select bug will produce a continuously changing voltage within plus or minus 30 degrees of the upper lubber line. Beyond that point, the voltage will remain constant at approximately $\pm 12.5 \mathrm{VDC}$. When the bug is rotated to the bottom of the instrument, the voltage changes polarity and again remains constant until it is moved within 30 degrees of the upper lubber line where it begins to decrease toward zero volts.
The course datum cam is cut in a similar fashion, except that it is symmetrical on the upper and lower sections allowing for back course autopilot operation. In addition, the course cam has a larger linear range than the heading cam, extending out to 80 degrees on either side of the upper or lower lubber lines with only 20 degrees of constant radius on each side of the instrument.

4.7 NAV DEVIATION AND TO-FROM INDICATORS

Unlike the glideslope pointer, the NAV deviation and TO-FROM indicators are conventional meter movements mounted inside the center yoke assembly. The NAV meter is a 1000n, 15011a unit and the TO-FROM meter is a 200 n , 200pa device.
Drive current is supplied by the NAV receiver through P. C. board pins b and V for the NAV meter, and pins Z and T for the TO-FROM meter. From the P. C. board, the current passes through two pairs of brushes attached to the P. C. board that extended down on each side of four metal rings surrounding the.center yoke assembly as shown in Figure 4-9. Wires soldered to the four rings supply current to the respective meter movements.

THIS PAGE IS RESERVED

FIGURE 4-8 COURSE DATUM PICKOFF ASSEMBLY

FIGURE 4-9 CENTER YOKE WITH NAV AND TO-FROM BRUSH ASSEMBLY

THIS PAGE IS RESERVED

SECTION V
 MAINTENANCE

5.1 INTRODUCTION

This section deals with the testing, overhaul, and trouble shooting procedure for the KI 525 Pictorial Navigation Indicator.

5.2 TEST AND ALIGNMENT

5.2.1 GENERAL REQUIREMENTS

Unless otherwise specified all tests shall be conducted with the indicator in its normal operating position and at ambient room temperature (25 ± 5 degrees C) and humidity not to exceed 80%.

5.2.1.1 ELECTRICAL

Output signals
a) HDG SEL $0.5 \quad \mathrm{vdc} / \mathrm{deg}$
b) CRS Datum $0.2 \quad \mathrm{vdc} / \mathrm{deg}$

Input signals
a) VOR deviation $15 \mathrm{mv} / \mathrm{deg}$
b) GS deviation $300 \mathrm{mv} / \mathrm{deg}$
c) VOR Flag valid 210 mv
d) GS Valid 210 mv
e) PWR Valid 15 vdc
f) TO-FROM $\pm 150 \mathrm{mv}$
g) Lighting $\pm 14 \quad \mathrm{vdc}$ or +28 vdc
h) Two phase state signal to stepper motor

5.2.1.2 MECHANICAL

a) Compass Card $1 / 4$ deg increments
b) HDG Sel Cam 0.0016 in/deg
c) CRS DTM Cam 0.0006 in/deg
5.2.2 TEST EQUIPMENT
a) KTS-153 Test Set
b) Precise angle indicator.
c) ORZ test circuit described in RTCA 209-54/DD-62
d) DC voltmeter-Similar to Fluke Model 8000A
e) Oscilloscope-Similar to Tektronix, Model 516.

5.2.3 CALIBRATION PROCEDURE

The initial phase of this procedure shall be performed with the unit in the final stage of assembly. The PC board shall be wired to the harness but not assembled to the main structural casting.

1) Place the KTS-153 Power Switch OFF. Connect the unit to the tester. Connect a precise angle indicator (PAI) to the HDG CX jacks on the front of the tester.
2) Carefully rotate the first gear forward of the slip rings until NORTH is precisely under the lubber line. Loosen the heading repeater hold-down screws, and rotate the synchro for 0.00° on the PAI. Tighten the hold-down screws.
3) Rotate the heading card until EAST appears under the lubber line. The PAI shall read $90 \pm 1.0^{\circ}$.
4) Return the heading card to 0.0°, and loosen the slaving CT hold-down screws. Switch the PAI to the slaving CT, and rotate the synchro for 0.00° on the PAI. Tighten the hold-down screws.
5) Rotate the heading card until EAST appears under the lubber line. The PAI shall read $90 \pm 1.0^{\circ}$.
6) Rotate the heading card to NORTH, and position the course pointer at 300°. Connect the ORZ test set to the OBS Resolver jacks. Loosen the course resolver holddown screws and calibrate the 30 Hz resolver according to the constant rotor voltage test procedures given in RTCA paper 209-54/DO-62. Tighten the hold-down screws. Assemble the PC board to the main structure but do not install the unit cover.
7) Place the following tester switches to the indicated position:

SWITCH	POSITION
RES/DEV	DEV
D-BAR/TO-FM	D-BAR
METER	GS DEV
$14 / 28$ vdc	+14 vdc on Panel Meter
$\pm 15 \mathrm{vdc}$	ON
+5 vdc	ON
GS DEV CMR	OFF
GS FLAG CMR	OFF
CCW-CW	CCW
Stepper Drive	OFF
NAV FLAG CMR	OFF
+15 VNREG	NORMAL
115 VAC 400 Hz.	ON

8) Adjust the $14 / 28 \mathrm{vdc}$ pot for 28 vdc on the tester voltmeter.
9) Place a black cloth over the indicator to remove as much light as possible from the three photocell areas. Adjust the GS flag pot fully clockwise, and the GS DEV pot for $0.0 \mathrm{vdc} \mathrm{E}(+)$ to $\mathrm{B}(-)(\mathrm{J} 2)$. Refer to figure $5-1$ and loosen the GS photocell assembly hold down screw. Carefully adjust the photocell assembly to position the glideslope pointer directly over the center mark on the glideslope scale when viewing the indicator from 25 degrees above the front. Tighten the photocell assembly holddown screw.
10) Adjust the GS DEV pot fully clockwise. The GS pointer shall move toward the top of the indicator. Adjust pot R147 until the GS pointer is just in view at the top of the indicator when viewed from 30° above the longitudinal axis of the unit. Adjust the GS DEV pot for 0.0 Vdc .
11) Position the heading bug and the course pointer precisely under the lubber line. Loosen the two shutter hold-down screws on each shutter less than $1 / 2$ turn.
12) Monitor the voltage from $\mathrm{P}(+)$ to $\mathrm{S}(-)$ (J1). With the black cloth covering the unit, move the heading shutter (forward photocell) with the adjusting tool until the voltage $P(+)$ to $S(-)(\mathrm{J} 1)$ is 0.0 Vdc . Carefully tighten the two hold-down screws while maintaining 0.0 Vdc from $\mathrm{P}(+)$ to $\mathrm{S}(-)$.
13) Monitor the voltage from pin $\underline{e}(+)$ to $S(-)$ (J1). Repeat the above adjustment procedure on the CRS shutter (rearward).
14) Position the HDG bug to $10 \pm 0.5^{\circ}$ to the right of the lubber line and the CRS Pointer to $10 \pm 0.5^{\circ}$ to the left of the lubber line. Adjust R169 for +5.5 Vdc from pin $\mathrm{P}(+)$ to S(-) (J1) and adjust R170 for -2.1 vdc from pin e (+) to S(-) (J1).
15) Remove all power from the unit. Apply glyptal to the four shutter hold-down screws and to the GS photocell assembly hold-down screw. Place the cover on the unit, and secure it with two rear-mounted screws.

5.2.4
 FINAL TEST PROCEDURE

The unit shall be completely assembled with the cover in place.

1) Connect the unit to the tester, and set the panel switches as listed in 5.2 .3 (7) above. Place the heading and course pointers under the lubber line, and adjust the GS flag, GS deviation, and NAV flag sources for 0.0 Vdc. Record the following voltages:
a) $\quad \mathrm{J} 1 \mathrm{Pin} \mathrm{P}(+)$ to $\mathrm{S}(-) \quad 0.0 \pm 0.3 \mathrm{Vdc}$
b) $\quad \mathrm{J} 1 \mathrm{Pin} \underline{\mathrm{e}}(+)$ to $\mathrm{S}(-) \quad 0.0 \pm 0.60 \mathrm{Vdc}$
2) Adjust the $14 / 28 \mathrm{Vdc}$ pot for +11.2 Vdc on the panel meter. The NAV and PWR flags shall be fully in view. Slowly increase the NAV flag voltage until the NAV flag snaps up out of view. The flag shall be completely out of view.
NAV flag voltage $K(+)$ to $F(-) \quad+0.21 \pm 0.03 \mathrm{Vdc}$.
Adjust the 14/28 VDC pot for +14.0 Vdc .
3) Switch the NAV flag CMR switch to the POS position. Re-adjust the NAV flag voltage to the value recorded in 2 above. The NAV flag shall not be in view.
4) Switch the $14 / 28 \mathrm{~V}$ NAV PWR OFF. The NAV flag shall come completely into view.
5) Switch the $14 / 28$ V NAV PWR to the 28 V position, and adjust the $14 / 28$ VDC pot for +28.0 Vdc . The NAV flag shall go completely out of view.
6) Decrease the voltage to 22.4 Vdc . The NAV flag shall remain out of view.
7) Slowly decrease the NAV flag voltage until the NAV flag drops into view. The NAV flag voltage $\mathrm{K}(+)$ to $\mathrm{F}(-)$ shall be $0.17 \pm 0.03 \mathrm{Vdc}$. Return the input voltage to +28 Vdc .
8) Monitor the voltage on $\mathrm{P}(+)$ to $\mathrm{S}(-)$ and adjust the heading pointer 10° left of the lubber line.
$\mathrm{P}(+)$ to $\mathrm{S}(-) \quad-5.5 \pm 1.2 \mathrm{Vdc}$
9) Continue to rotate the heading pointer to the left until the voltage stops changing. The pointer shall be $30 \pm 5^{\circ}$ right of the lubber line.
$\mathrm{P}(+)$ to $\mathrm{S}(-) \quad-12.5 \pm 2 \mathrm{Vdc}$
10) Adjust the pointer 10° right of the lubber line.
$\mathrm{P}(+)$ to $\mathrm{S}(-) \quad+5.5 \pm 1.2 \mathrm{Vdc}$
(Offset recorded in 1)a) shall be used as the reference for this measurement.)
11) Continue to rotate the heading pointer to the right until the voltage stops changing. The pointer shall be $30 \pm 5^{\circ}$ right of the lubber line.

$$
\mathrm{P}(+) \text { to } \mathrm{S}(-) \quad+12.5 \pm 2 \mathrm{VVdc}
$$

12) Continue rotating the heading pointer to the right until the voltage switches to $-14 \pm 3 \mathrm{Vdc}$. The heading pointer shall be within 10° of the bottom of the indicator.
13) Monitor the voltage $\mathrm{J} 1 \underline{\mathrm{e}}(+)$ to $\mathrm{S}(-)$, and adjust the course pointer 10° left.
e(+) to S(-)
$-2.1 \pm 0.4 \mathrm{Vdc}$
14) Continue to rotate the course pointer to the left until the voltage stops changing. The pointer shall be $80 \pm 10^{\circ}$ left of the lubber line.

$$
\underline{e}(+) \text { to } S(-) \quad-12.5 \pm 2 \mathrm{Vdc}
$$

15) Adjust the course pointer 10° right of the lubber line.
e(+) to S(-)
$+2.1 \pm 0.4 \mathrm{Vdc}$
16) Continue to rotate the course pointer to the right until the voltage stops changing. The pointer shall be 80 ± 10 degrees right of the lubber line.

$$
\underline{\mathrm{e}}(+) \text { to } \mathrm{S}(-) \quad+12.5 \pm 2 \mathrm{Vdc}
$$

17) Continue to rotate the course pointer to the right until the voltage begins to decrease.
CRS pointer $\quad 100 \pm 10$ deg. right of the lubber line
18) Continue the right hand rotation until the voltage reads 0.0 vdc. The course pointer shall be within 10 degrees of the bottom of the indicator.
19) Continue the right hand rotation until the voltage stops changing.

CRS pointer $\quad 100 \pm 10$ deg. left of the lubber line
20) Adjust the GS deviation for maximum positive, maximum negative, and then back to zero. At no time shall the GS pointer come into view.
21) Increase the GS flag voltage $\mathrm{J} 2-\mathrm{J}(+)$ to $\mathrm{J} 1-\mathrm{W}(-)$ to 0.215 Vdc .
a) The GS pointer shall drop into view within 10 seconds.
b) GS pointer center scale $\pm 1 / 2$ needle width (left side).
c) GS pointer center scale $\pm 1 / 2$ needle width (right side).
d) The GS pointer shall have no tendency to oscillate.
22) Switch the GS flag CMR switch to the POS, NEG, and then OFF positions. At no time shall the GS pointer move out of view.
23) Adjust the GS pointer to the following positions on the GS scale, and record the input voltages from E to B (J2).
$\begin{array}{ll}\text { a) One dot up } & +75 \pm 10 \mathrm{mVdc} \\ \text { c) } & \text { Two dots up }\end{array}$
d) Maximum up command

Pointer in view at top of scale when viewed at 30° above unit centerline
e) One dot down
$-75 \pm 10 \mathrm{mVdc}$
f) Two dots down
$-150 \pm 20 \mathrm{mVdc}$
24) Adjust the GS flag voltage, (J2-J to J1-W), to 0.185 Vdc . The GS pointer shall slowly move up out of view.
25) Adjust the GS DEV voltage to 0.0 Vdc .
26) Place the RES/DEV switch to RES, and the DEV-BAR/TO-FROM switch to DEVBAR. Adjust the RES pot for 0.3 Vdc at TP-A.
(J1) Pin \underline{b}
$0.150 \pm 0.004 \mathrm{Vdc}$
27) Switch the DEV-BAR TO-FROM switch to the TO-FROM position, and adjust the RES pot for 0.3 Vdc at TP-A.
Pin Z
$0.050 \pm 0.005 \mathrm{Vdc}$
28) Switch the RES/DEV switch to DEV, and rotate the METER CURRENT adjust for a fully in-view TO indication. Position the course pointer under the lubber line.
(TO-FROM flag points toward course pointer.)
$\mathrm{J} 1 \mathrm{Z}(+)$ to $\mathrm{T}(-) \quad+200 \pm 40$ (adc
29) Repeat for a full FROM indication.

J1 Z(+) to T(-) -200 ± 40 (adc
30) Rotate the Meter Current adjust to 0.0. Slowly rotate the course pointer 360°. The TO-FROM flag shall remain totally out of view when viewed from the front.
31) Tilt the unit 90° up. The TO-FROM flag shall remain out of view.
32) Switch the DEV-BAR TO-FROM switch to the DEV-BAR position, and position the course pointer under the lubber line. With the Meter Current adjust at 0.0 Vdc , the course deviation bar shall be aligned with the ends of the course select pointer and the symbolic airplane centerline within $1 / 4$ bar width.
33) Slowly rotate the course pointer 360°. The DEV bar shall not move more than $1 / 2$ bar width.
34) Tilt the unit 90° up. The DEV bar shall not move more than $1 / 2$ bar width.
35) Adjust the DEV bar to the following positions. Record the current readings on the panel Microamp Meter. The movement of the DEV bar shall be unrestricted throughout the travel.
a) One dot left $\quad-30 \pm 4$ (adc
b) Two dots left -60 ± 8 (adc
c) Three dots left -90 ± 12 (adc
d) Four dots left -120 ± 16 (adc
e) Five dots left -150 ± 20 (adc
f) Five dots right $+150 \pm 20$ (adc
g) Four dots right $+120 \pm 16$ (adc
h) Three dots right $+90 \pm 12$ (adc
i) Two dots right $+60 \pm 8$ (adc
j) One dot right $\quad+30 \pm 4$ (adc
36) Switch the stepper drive ON, and adjust the slew speed for a 1.0 -second square wave period at Pin A (J2). The heading card shall move smoothly with uniform steps. Switch the CW/CCW switch to CW, and check for smoothness.
37) Decrease the square wave period at Pin A (J2) to 67 ms , and check the display for smoothness in both directions.
38) Switch the stepper drive off, and position the heading bug to 360°, and the course pointer at 90° relative to the compass card. Switch the stepper drive on, and allow the card to make two revolutions. The heading bug and the course pointer shall be within two degrees of the respective starting positions. Repeat this test with the display rotating in the opposite direction.
39) Rotate the heading knob in a direction opposite to that of the compass card. The compass card shall continue rotating smoothly without missing any steps. Repeat for the opposite direction. Allow the compass cards to rotate 360° in each direction.
40) Decrease the square wave period at Pin A (J2) to 33 ms , and check the display for smoothness in both directions. There shall be no evidence of missed steps. Increase the square wave period to 0.1 second, and shut off the display.
41) Connect the PAI to the panel jacks shown, and position NORTH under the lubber line using the stepper drive direction and speed control.
a) PAI:
Slaving CT
$0.0 \pm 1.0^{\circ}$
b) PAI:
HDG CX
$0.0 \pm 1.0^{\circ}$

Position the compass card to the headings shown, and record the PAI values.

c)	HDG: 90°	Slave CT	$90 \pm 1.0^{\circ}$
		HDG CX	$90 \pm 1.0^{\circ}$
d)	HDG: 180°	Slave CT	$180 \pm 1.0^{\circ}$
		HDG CX	$180 \pm 1.0^{\circ}$
e)	HDG: 270°	Slave CT	$270 \pm 1.0^{\circ}$
		HDG CX	$270 \pm 1.0^{\circ}$
f)	HDG: 0.0°	Slave CT	$0 \pm 1.0^{\circ}$
		HDG CX	$0 \pm 1.0^{\circ}$

42) The course resolver shall be zeroed at $300^{\circ} \pm 1^{\circ}$ using the constant rotor voltage test in RTCA paper 209-54/DO-62.
43) The stator output voltages determined in accordance with the constant rotor voltage test shall be 0.180 ± 0.012.
44) Connect the resolver to a calibrated resolver, phase shifter, accuracy bridge, or equivalent error-measuring equipment, and excite the rotor with 0.5 V 30 Hz . Rotate the course knob clockwise to position the course pointer at 60° increments from 0° to 360°. The maximum error shall be $\pm 1^{\circ}$.
45) Switch the +15 unregulated switch to VARIABLE, and rotate the adjust pot fully counter-clockwise. The PWR flag shall be fully in view.
46) Slowly rotate the adjust pot clockwise until the PWR flag snaps out of view.

Pin \underline{v} (J101) $\quad+10+3 /-4 \mathrm{Vdc}$
47) Slowly rotate the pot counter-clockwise until the PWR flag snaps into view.

Pin \underline{v} (J101) $\quad+4 \pm 3 \mathrm{Vdc}$
48) Place the +15 unregulated switch to NORMAL.
49) Adjust the lighting pot fully CW and observe both lamps on and uniform illumination of the display.
50) Switch the $14 / 28 \mathrm{v}$ switch to 14 v and adjust for 14 vdc on the panel Meter. Both lamps shall be on and the display shall be illuminated in a uniform manner.
51) Slowly decrease the lighting intensity. The display illumination shall decrease in a smooth and uniform fashion.
52) Switch the $14 / 28 \mathrm{v}$ switch to 28 v and adjust for 28 vdc on the panel meter. Slowly increase the lighting intensity. The display illumination shall increase in a smooth and uniform manner.
53) Adjust the METER CURRENT pot for half-scale on the DEV-BAR, and slowly rotate the compass card 360° using the stepper drive controls. There shall be no discontinuity in the DEV-BAR display.
54) Place the DEV-BAR/TO-FROM switch to TO-FROM, and adjust the METER CURRENT pot until the flag is just off the stop in either the TO or FROM position. Slowly rotate the compass card 360°. There shall be no discontinuity in the TO-FROM display.
55) Rotate the METER CURRENT pot fully clockwise. Reduce the current to 100 uadc. The TO-FROM flag shall move smoothly off the stop. Repeat for the opposite polarity.
56) Place the DEV-BAR/TO-FROM switch to the DEV-BAR position, and rotate the METER CURRENT pot fully clockwise. Rotate the compass card 360°. The D-bar shall not touch the compass card. Reduce the current to 90 uadc. The D-bar shall move smoothly off the stop. Repeat for the opposite polarity.

THIS PAGE IS RESERVED

TEST DATA SHEETS

1) $C R S$ AND HDG under lubber line
a) J 1 Pin P to $\mathrm{S}(-)$
$0.0+/-0.3 \mathrm{vdc}$
$0.0+/-0.6 \mathrm{vdc}$
2) Input voltage to 11.2 vdc NAV flag out of view J1K to P(-)
3) NAV flag CMR to Pos

NAV flag
4) $14 / 28$ vdc OFF NAV flag
5) $28 v$ input power NAV flag
6) Input voltage to 22.4 vdc

NAV flag
7) NAV threshold

NAV flag in view
J1K to F(-)
PWR VALID
PWR flag
8) HDG SEL 10 deg Left

J1P to S(-)
9) HDG SEL to limit left J1P to S(-)
10) HDG SEL 10 deg Right J1P to S(-)
11) HDG SEL to limit Right J1P to S(-)
12) HDG SEL Right to Crossover
13) CRS 10 deg Left J1e to S(-)
14) CRS to limit left J1e to S(-)
15) CRS 10 deg Right J1e to S(-)
16) CRS to limit Right J1e to S(-)
17) End of CRS limit Right
18) CRS Null at bottom
19) End of CRS limit left
20) GS Max Pos, Neg, Zero
\qquad $0.21+/-0.03$ vdc
\qquad out of view
\qquad IN VIEW
\qquad
out of view
\qquad

0.17+/-0.03vdc
Out of view
$5.5+/-1.2 \mathrm{vdc}$

$\ldots-12.5+/-2 \mathrm{vdc}$
$\ldots+5.5+/-1.2 \mathrm{vdc}$
_ $30+/-5$ deg Right
$\ldots+12.5+/-2 \mathrm{vdc}$
_ bottom +/-10 deg
\qquad $-2.1+/-0.4 \mathrm{vdc}$
\qquad $-2.1+/-0.4 \mathrm{vdc}$ 12.5 +/-2 vdc
\qquad +2.1 +/-0.4vdc
\qquad $80+/-10$ deg Right
\qquad $+12.5+/-2 \mathrm{vdc}$
\qquad $100+/-10$ deg Right
\qquad bottom +/-10 deg
\qquad $100+/-10$ deg left
\qquad Out of view
21) GS Flag to J2-J to JI-W(-)
a) GS Pointer
b) GS Left Pointer
c) GS Right Pointer
d) GS Pointer
22) GS CMR - Pos, Neg, OFF
23) GS Scale - J2E to B(-)
a) One dot up
b) two dots up
c) Max up
d) One dot down
e) Two dots down
24) GS Flag J2 - J to J1 - W

GS Pointer
25) RES pot for $0.3 v d c$ (D-BAR) J1- \underline{b}
26) Res Pot for 0.3vdc (TO-FM) J1-Z
27) Full TO indication

J1-Z to T(-)
28) Full FROM Indication

JI-Z to T(-)
29) TO-FM to Zero

Rotate CRS
TO-FM
30) Unit 90 degrees UP

TO-FM
31) Align D-BAR and CRS Pointer
32) Rotate CRS

D-BAR
33) UNIT 90 degrees UP

D-BAR
34) D-BAR Scale
a) One dot left
b) Two dots left
c) Three dots left
d) Four dots left
e) Five dots left
f) Five dots right
g) Four dots right
h) Three dots right
i) Two dots right
j) One dot right
35) Pin A Period - 1.0 sec

Clockwise Motion
Counter Clockwise Motion
36) Pin A Period - 67 ms

CW Motion \qquad
37) HDG bug at 360 degrees

CRS at 90 degrees
Two Revolutions
HDG bug
CRS
Reverse Direction
HDG bug
CRS
38) HDG bug opposite of Card

Compass Card
Opposite direction
Compass Card
39) Pin A period - 33 Ms .

Compass Card
Pin A period 0.1 second DISPLAY OFF
40) PAI check - N under lubber line
a) Slaving CT
b) HDG CX

-
 $0.0+/-1.0 \mathrm{deg}$
 $\longrightarrow 0.0+/-1.0 \mathrm{deg}$

Compass Check
a) HDG - 90 deg

Slave CT
HDG CX
b) HDG-180 deg

Salve CT
HDG CX
c) HDG - 270 deg .

Slave CT
HDG CX
d) HDG -0.0 deg

Slave CT
HDG CX
41) CRS Resolver
42) Stator Output Voltage
43) CRS Resolver Accuracy

CRS - 0.0 deg
60 deg
120 deg 180 deg 240 deg 300 deg
44) 15 volt unreg fully CCW PWR Flag
45) PWR Flag out of view JI-Pin \underline{v}
$90+/-1.0 \mathrm{deg}$
$90+/-1.0 \mathrm{deg}$
$\ldots \begin{aligned} & 180+/-1.0 \mathrm{deg} \\ & 180+/-1.0 \mathrm{deg}\end{aligned}$
$270+/-1.0 \mathrm{deg}$
$270+/-1.0 \mathrm{deg}$
\square
$0.0+/-1.0$ deg $0.0+/-1.0 \mathrm{deg}$
\ldots OK
$\ldots 0.180+/-0.012$ VAC
_ $0.0+/-1 \mathrm{deg}$
$60+/-1$ deg $120+/-1$ deg $180+/-1$ deg $240+/-1$ deg 300 +/-1 deg
\qquad IN VIEW
\qquad $+10+3 /-4 \mathrm{vdc}$

46) PWR Flag in view JI-Pin \underline{v}	+4 +/-3vdc
47) PWR INVALID PWR Flag	IN VIEW
48) Lighting	OK
49) Lighting to $14 v$	OK
50) Variable Lighting Intensity	OK
51) Lighting to 28 V	OK
52) D-BAR Continuity	OK
53) TO-FM Continuity	OK
54) TO-FM Stops Opposite polarity	$\begin{aligned} & \mathrm{OK} \\ & \mathrm{OK} \end{aligned}$
55) D-BAR Interference D-BAR Stops Opposite polarity	$\begin{aligned} & \mathrm{OK} \\ & \mathrm{OK} \\ & \mathrm{OK} \end{aligned}$

FIGURE 5-1 Glideslope Assembly Calibration

THIS PAGE IS RESERVED

5.3 OVERHAUL

5.3.1 VISUAL INSPECTION

This section contains instructions and information to assist in determining, by visual inspection, the condition of the units major assemblies and subassemblies. These inspection procedures will assist in finding defects resulting from wear, physical damage, deterioration, or other causes. To aid inspection, detailed procedures are arranged in alphabetical order.
A. Capacitors, Fixed

Inspect capacitors for case damage, body damage, and cracked, broken, or charred insulation. Check for loose, broken, or corroded terminal studs, lugs, or leads. Inspect for loose, broken, or improperly soldered connections. On chip caps, be especially alert for hairline cracks in the body and broken terminations.
B. Capacitors, Variable

Inspect trimmers for chipped and cracked bodies, damaged dielectrics, and damaged contacts.
C. Chassis

Inspect the chassis for loose or missing mounting hardware, deformation, dents, damaged fasteners, or damaged connectors. In addition, check for corrosion or damage to the finish that should be repaired.
D. Circuit Boards

Inspect for loose, broken, or corroded terminal connections; insufficient solder or improper bonding; fungus, mold, or other deposits; and damage such as cracks, burns, or charred traces.
E. Connectors

Inspect the connector bodies for broken parts; check the insulation for cracks, and check the contacts for damage, misalignment, corrosion, or bad plating. Check for broken, loose, or poorly soldered connections to terminals of the connectors. Inspect connector hoods and cable clamps for crimped wires.
F. Covers and Shields

Inspect covers and shields for punctures, deep dents, and badly worn surfaces. Also, check for damaged fastener devices, corrosion and damage to finish.
G. Flex Circuits

Inspect flex circuits for punctures, and badly worn surfaces. Check for broken traces, especially near the solder contact points.
H. Front Panel

Check that name, serial, and any plates or stickers are secure and hardware is tight. Check that the handle is functional, securely fastened, and handle casting is not damaged or bent.
I. Fuse

Inspect for blown fuse and check for loose solder joints.
J. Insulators

Inspect insulators for evidence of damage, such as broken or chipped edges, burned areas, and presence of foreign matter.
K. Jacks

Inspect all jacks for corrosion, rust, deformations, loose or broken parts, cracked insulation, bad contacts, or other irregularities.
L. Potentiometers

Inspect all potentiometers for evidence of damage or loose terminals, cracked insulation or other irregularities.
M. Resistors, Fixed

Inspect the fixed resistors for cracked, broken, blistered, or charred bodies and loose, broken, or improperly soldered connections. On chip resistors, be especially alert for hairline cracks in the body and broken terminations.
N. RF Coils

Inspect all RF coils for broken leads, loose mountings, and loose, improperly soldered, or broken terminal connections. Check for crushed, scratched, cut or charred windings. Inspect the windings, leads, terminals and connections for corrosion or physical damage. Check for physical damage to forms and tuning slug adjustment screws.
O. Terminal Connections Soldered
(1) Inspect for cold-soldered or resin joints. These joints present a porous or dull, rough appearance. Check for strength of bond using the points of a tool.
(2) Examine the terminals for excess solder, protrusions from the joint, pieces adhering to adjacent insulation, and particles lodged between joints, conductors, or other components.
(3) Inspect for insufficient solder and unsoldered strands of wire protruding from the conductor at the terminal. Check for insulation that is stripped back too far from the terminal.
(4) Inspect for corrosion at the terminal.
P. Transformers
(1) Inspect for signs of excessive heating, physical damage to the case, cracked or broken insulation, and other abnormal conditions.
(2) Inspect for corroded, poorly soldered, or loose connecting leads or terminals.
Q. Wiring/Coaxial Cable

Inspect wiring in chassis for breaks in insulation, conductor breaks, cut or broken lacing and improper dress in relation to adjacent wiring or chassis.
5.3.2 CLEANING
A. General

This section contains information to aid in the cleaning of the component parts and subassemblies of the unit.

WARNING:
GOGGLES ARE TO BE WORN WHEN USING PRESSURIZED AIR TO BLOW DUST AND DIRT FROM EQUIPMENT. ALL PERSONNEL SHOULD BE WARNED AWAY FROM THE IMMEDIATE AREA.

WARNING:
OPERATIONS INVOLVING THE USE OF A CLEANING SOLVENT SHOULD BE PERFORMED UNDER A VENTILATED HOOD. AVOID BREATHING SOLVENT VAPOR AND FUMES; AVOID CONTINUOUS CONTACT WITH THE SOLVENT. WEAR A SUITABLE MASK, GOGGLES, GLOVES, AND AN APRON WHEN NECESSARY. CHANGE CLOTHING UPON WHICH SOLVENTS HAVE BEEN SPILLED.

WARNING:

OBSERVE ALL FIRE PRECAUTIONS FOR FLAMMABLE MATERIALS. USE FLAMMABLE MATERIALS IN A HOOD PROVIDED WITH SPARK-PROOF ELECTRICAL EQUIPMENT AND AN EXHAUST FAN WITH SPARKPROOF BLADES.
B. Recommended Cleaning Agents

Table 5-1 lists the recommended cleaning agents to be used during overhaul of the unit.

NOTE:
EQUIVALENT SUBSTITUTES MAY BE USED FOR LISTED CLEANING AGENTS.

TYPE	USED TO CLEAN
Denatured Alcohol	Various, exterior and interior
DuPont Vertrel SMT	Various, interior
PolaClear Cleaner (Polaroid Corp.) or Texwipe TX129 (Texwipe Co.)	CRT display filter, LCD displays, and general purpose lens/glass cleaner.
KimWipes lint-free tissue (Kimberly Clark Corp.)	Various
Cloth, lint-free cotton	Various
Brush, flat with fiber bristles	Various
Brush, round with fiber bristles	Various
Dishwashing liquid (mild)	Nylon, Rubber Grommets

TABLE 5-1 RECOMMENDED CLEANING AGENTS
C. Recommended Cleaning Procedures

CAUTION:

DO NOT ALLOW SOLVENT TO RUN INTO SLEEVES OR CONDUIT THAT COVERS WIRES CONNECTED TO INSERT TERMINALS.

1. Exterior
(a) Wipe dust cover and front panel with a lint-free cloth dampened with denatured alcohol.
(b) For cleaning connectors, use the following procedure.
(1) Wipe dust and dirt from bodies, shells, and cable clamps using a lint-free cloth moistened with denatured alcohol.
(2) Wipe parts dry with a clean, dry lint-free cloth.
(3) Remove dirt and lubricant from connector inserts, insulation, and terminals using a small soft bristled brush moistened with denatured alcohol.
(4) Dry the inserts with an air jet.
(c) Remove cover(s).
(d) If necessary, open any blocked ventilation holes by first saturating the debris clogging the apertures with denatured alcohol and then blowing the loosened material out with an air stream.
2. Interior

The following solvents are no longer recommended for benchtop or rework cleaning of printed circuit boards, modules, or sub-assemblies.

FREON TF, IMC	TRICHLOROETHANE
CARBON TETRACHLORIDE	DETERGENT (ALL™ AND EQUIVALENTS)
CHLOROFORM	METHYLENE CHLORIDE
TRICHLOROETHYLENE	GENESOLV 2004/2010
PROPYL ALCOHOL	METHYL ALCOHOL
ETHYL ALCOHOL	BUTYL ALCOHOL
XYLENE	PRELETE (CFC-113)

TABLE 5-2 UNSAFE CLEANING AGENTS

CAUTION:
DO NOT USE SOLVENT TO CLEAN PARTS COMPOSED OF OR CONTAINING NYLON OR RUBBER GROMMETS. CLEAN THESE ITEMS WITH MILD LIQUID DISHWASHING DETERGENT AND WATER. USE DETERGENT FOR THIS PURPOSE ONLY.

CAUTION:
DUPONT VERTREL SMT DOES HAVE GENERAL MATERIAL COMPATIBILITY PROBLEMS WITH POLYCARBONATE, POLYSTYRENE, AND RUBBER. IT IS RECOMMENDED THAT THESE MATERIALS BE CLEANED WITH DENATURED ALCOHOL.

CAUTION:
DO NOT ALLOW EXCESS CLEANING SOLVENT TO ACCUMULATE IN ANY OF THE ADJUSTMENT SCREW CREVICES AND THEREBY SOFTEN OR DISSOLVE THE ADJUSTMENT SCREW EPOXY SEALANT.

CAUTION:
AVOID AIR-BLASTING SMALL TUNING COILS AND OTHER DELICATE PARTS BY HOLDING THE AIR NOZZLE TOO CLOSE. USE BRUSHES CAREFULLY ON DELICATE PARTS.

CAUTION:
IMPROPER CLEANING CAN RESULT IN SURFACE LEAKAGE AND CONDUCTIVE PARTICULATES, SUCH AS SOLDER BALLS OR METALLIC CHIPS, WHICH CAN CAUSE ELECTRICAL SHORTS. SEVERE IONIC CONTAMINATION FROM HANDLING AND FROM ENVIRONMENTAL CONDITIONS CAN RESULT IN HIGH RESISTANCE OR OPEN CIRCUITS.

CAUTION:
ULTRASONIC CLEANING CAN DAMAGE CERTAIN PARTS AND SHOULD GENERALLY BE AVOIDED.

NOTE:
Solvents may be physically applied in several ways including agitation, spraying, brushing, and vapor degreasing. The cleaning solvents and methods used shall have no deleterious effect on the parts, connections, and materials being used. If sensitive components are being used, spray is recommended. Uniformity of solvent spray flow should be maximized and wait-time between soldering and cleaning should be minimized.

NOTE:
Clean each module subassembly. Then remove any foreign matter from the casting.

Remove each module subassembly. Then remove any foreign matter from the casting.
(a) Casting covers and shields should be cleaned as follows:
(1) Remove surface grease with a lint-free cloth.
(2) Blow dust from surfaces, holes, and recesses using an air stream.
(3) If necessary, use a solvent, and scrub until clean, working over all surfaces and into all holes and recesses with a suitable non-metallic brush.
(4) Position the part to dry so the solvent is not trapped in holes or recesses. Use an air stream to blow out any trapped solvent.
(5) When thoroughly clean, touch up any minor damage to the finish.
(b) Assemblies containing resistors, capacitors, rf coils, inductors, transformers, and other wired parts should be cleaned as follows:
(1) Remove dust and dirt from all surfaces, including all parts and wiring, using soft-bristled brushes in conjunction with air stream.
(2) Any dirt that cannot be removed in this way should be removed with a brush (not synthetic) saturated with an approved solvent, such as mentioned above. Use of a clean, dry air stream (25 to 28 psi) is recommended to remove any excess solvent.
(3) Remove flux residue, metallic chips, and/or solder balls with an approved solvent.
(c) Wired chassic devices containing terminal boards, resistor and capacitor assemblies, rf coils, switches, sockets, inductors, transformers, and other wired parts should be cleaned as follows:

NOTE:
When necessary to disturb the dress of wires and cables, note the positions before disturbing and restore them to proper dress after cleaning.
(1) Blow dust from surfaces, holes, and recesses using an air jet.
(2) Finish cleaning chassis by wiping finished surfaces with a lint-free cloth moistened with solvent.
(3) Dry with a clean, dry, lint-free cloth.
(4) When thoroughly clean, touch-up any minor damage to the finish.
(5) Protect the chassis from dust, moisture, and damage pending inspection.
(d) Ceramic and plastic parts should be cleaned as follows:
(1) Blow dust from surfaces, holes, and recesses using an air jet.
(2) Finish cleaning chassis by wiping finished surfaces with a lint-free cloth moistened with solvents.
(3) Dry with a clean, dry, lint-free cloth.

5.3.3 REPAIR

A. General

This section contains information required to perform limited repairs on the unit.
The repair or replacement of damaged parts in airborne electronic equipment usually involves standard service techniques. In most cases, examination of drawings and equipment reveals several approaches to perform a repair. However, certain repairs demand following an exact repair sequence to ensure proper operation of the equipment. After correcting a malfunction in any section of the unit, it is recommended that a repetition of the functional test of the unit be performed.
B. Repair Precautions

1. Ensure that all ESDS and MOS handling precautions are followed.
2. Perform repairs and replace components with power disconnected from equipment.
3. Use a conductive table top for repairs and connect table to ground conductors of 60 Hz and 400 Hz power lines.
4. Replace connectors, coaxial cables, shield conductors, and twisted pairs only with identical items.
5. Reference "component side" of a printed circuit board in this manual means the side on which components are located; "solder side" refers to the other side. The standard references are as follows: nearside is the component side; farside is the solder side; on surface mount boards with components on both sides, the nearside is the side that has the J\#\#\#\# and P\#\#\#\# connector numbers.
6. When repairing circuits, carefully observe lead dress and component orientation. Keep leads as short as possible and observe correct repair techniques.
7. There are certain soldering considerations with surface mount components. The soldering iron tip should not touch the ceramic component body. The iron should be applied only to the termination-solder filet.
8. Observe cable routing throughout instrument assembly, prior to disassembly, to enable a proper reinstallation of cabling during reassembly procedures.

CAUTION

THIS EQUIPMENT CONTAINS ELECTROSTATIC DISCHARGE SENSITIVE (ESDS) DEVICES. EQUIPMENT MODULES AND ESDS DEVICES MUST BE HANDLED IN ACCORDANCE WITH SPECIAL ESDS HANDLING PROCEDURES.
C. Electrostatic Sensitive Devices (ESDS) Protection

1. Always discharge static before handling devices by touching something that is grounded.
2. Use a wrist strap grounded through a $1 \mathrm{M} \Omega$ resistor.
3. Do not slide anything on the bench. Pick it up and set it down instead.
4. Keep all parts in protective cartons until ready to insert into the board.
5. Never touch the device leads or the circuit paths during assembly.
6. Use a grounded tip, low wattage soldering station.
7. Keep the humidity in the work environment as high as feasibly possible.
8. Use grounded mats on the work station unless table tops are made of approved antistatic material.
9. Do not use synthetic carpet on the floor of the shop. If a shop is carpeted, ensure that a grounded mat is placed at each workstation.
10. Keep common plastics out of the work area.
D. MOS Device Protection

MOS (Metal Oxide Semiconductor) devices are used in this equipment. While the attributes of MOS type devices are many, characteristics make them susceptible to damage by electrostatic or high voltage charges. Therefore, special precautions must be taken during repair procedures to prevent damaging the device. The following precautions are recommended for MOS circuits, and are especially important in low humidity or dry conditions.

1. Store and transport all MOS devices in conductive material so that all exposed leads are shorted together. Do not insert MOS devices into conventional plastic "snow" or plastic trays used for storing and transporting standard semiconductor devices.
2. Ground working surfaces on workbench to protect the MOS devices.
3. Wear cotton gloves or a conductive wrist strap in series with a $200 \mathrm{~K} \Omega$ resistor connected to ground.
4. Do not wear nylon clothing while handling MOS devices.
5. Do not insert or remove MOS devices with power applied. Check all power supplies to be used for testing MOS devices. and be sure that there are no voltage transients present.
6. When straightening MOS leads, provide ground straps for the apparatus for the device.
7. Ground the soldering iron when soldering a device.
8. When possible, handle all MOS devices by package or case, and not by leads. Prior to touching the device, touch an electrical ground to displace any accumulated static charge. The package and substrate may be electrically common. If so, an electrical discharge to the case would cause the same damage as touching the leads.
9. Clamping or holding fixtures used during repair should be grounded, as should the circuit board, during repair.
10. Devices should be inserted into the printed circuit boards such that leads on the back side do not contact any material other than the printed circuit board (in particular, do not use any plastic foam as a backing).
11. Devices should be soldered as soon as possible after assembly. All soldering irons must be grounded.
12. Boards should not be handled in the area around devices, but rather by board edges.
13. Assembled boards must not be placed in conventional, home-type, plastic bags. Paper bags or antistatic bags should be used.
14. Before removing devices from conductive portion of the device carrier, make certain conductive portion of carrier is brought in contact with well grounded table top.
E. PC Board, Two-Lead Component Removal (Resistors, Capacitors, Diodes, etc.)
15. Heat one lead from component side of board until solder flows, and lift one lead from board; repeat for other lead and remove component (note orientation).
16. Melt solder in each hole, and using a desoldering tool, remove solder from each hole.
17. Dress and form leads of replacement component; insert leads into correct holes.
18. Insert replacement component observing correct orientation.
F. PC Board, Multi-Lead Component Removal (IC's, etc.)
19. Remove component by clipping each lead along both sides. Clip off leads as close to component as possible. Discard component.
20. Heat hole from solder side and remove clipped lead from each hole.
21. Melt solder in each hole, and using a desoldering tool, remove solder from each hole.
22. Insert replacement component observing correct orientation.
23. Solder component in place from farside of board. Avoid solder runs. No solder is required on contacts where no traces exist.
G. Replacement of Power Transistors
24. Unsolder leads and remove attaching hardware. Remove transistor and hard-coat insulator.
25. Apply Thermal Joint Compound Type 120 (Wakefield Engineering, Inc.) to the mounting surface of the replacement transistor.
26. Reinstall the transistor insulator and the power transistor using hardware removed in step (1).
27. After installing the replacement transistor, but before making any electrical connections, measure the resistance between the case of the transistor and the chassis, to ensure that the insulation is effective. The resistance measured should be greater than $10 \mathrm{M} \Omega$.
28. Reconnect leads to transistor and solder in place.
H. Replacement of Printed Circuit Board Protective Coating

WARNING
CONFORMAL COATING CONTAINS TOXIC VAPORS! USE ONLY WITH ADEQUATE VENTILATION.

1. Clean repaired area of printed circuit board per instructions in the Cleaning section of this manual.
2. Apply Conformal Coating, Humiseal \#1B-31 HYSOL PC20-35M-01 (Humiseal Division, Columbia Chase Corp., 24-60 Brooklyn Queens Expressway West, Woodside, N.Y., 11377) P/N 016-01040-0000.
3. Shake container well before using.
4. Spray or brush surfaces with smooth, even strikes. If spraying, hold nozzle 10-15 inches from work surface.
5. Cure time is ten minutes at room temperature.
I. Programmable Read Only Memory (PROM) Replacement

The read only memory packages are specially programmed devices to provide specific logic outputs required for operation in the unit. The manufacturer's part (type) number is for the un-programmed device, and cannot be used. The Honeywell part number must be used to obtain the correctly programmed device. Refer to the "lllustrated Parts List" (IPL).

5.3.3.1 REPLACEMENT OF COMPONENTS

This section describes the procedure, along with any special techniques, for replacing damaged or defective components.
A. Connectors

When replacing a connector, refer to the appropriate PC board assembly drawing, and follow the notes, to ensure correct mounting and mating of each connector.
B. Crystal

The use of any crystal, other than a Honeywell crystal, is considered an unauthorized modification.
C. Diodes

Diodes used are silicon and germanium. Use long-nose pliers as a heat sink, under normal soldering conditions. Note the diode polarity before removal.
D. Integrated Circuits

Refer to the applicable reference for removal and replacement instructions.
E. Wiring/Coaxial Cable

When repairing a wire that has broken from its terminal, remove all old solder, and pieces of wire from the terminal, re-strip the wire to the necessary length, and resolder the wire to the terminal. Replace a damaged wire or coaxial cable with one of the same type, size and length.

5.3.4

NOTE:
Instrument and gyro repair must be accomplished by a Honeywell approved Instrument service center, Warranty is valid only when the dust cover seal is intact.

The following instructions include the procedures that are necessary to remove and disassemble the subassemblies of the KI 525.

It is assumed that the dust cover has been removed and the unit has been tested according to the test procedures provided in paragraph 5.2 to locate the source of the malfunction. The unit should then be disassembled only to the station where the malfunction can be corrected by repair, cleaning, or adjustment. Do not disassemble any parts or wiring unnecessarily as repeated tear downs can be detrimental to the life of the unit.
The KI 525 is made up of eleven major subassemblies and a final assembly, The final assembly contains the necessary components and hardware required to bring the subassemblies together into a functional unit.
Disassembly instructions are provided to separate the subassembly from the basic unit, however, detailed breakdown of the components on each subassembly has not been included as this can be accomplished by referring to subassembly drawing (see Section VI). Reassembly can be accomplished by reversing the disassembly procedure. Special notes and adjustments are included in paragraph 5.3.3.7.

WARNING
REMOVE ALL POWER FROM THE UNIT BEFORE DISASSEMBLY OF ANY MODULE. BESIDES BEING DANGEROUS TO LIFE, VOLTAGE TRANSIENTS CAN CAUSE CONSIDERABLE DAMAGE TO THE EQUIPMENT.

CAUTION
 EXERCISE EXTREME CARE WHEN DISCONNECTING AND RECONNECTING MULTIPLE PIN CONNECTORS, TO ENSURE THAT THE CONNECTORS ARE NOT DAMAGED BY MISALIGNMENT OF THE PINS.

CAUTION
THIS EQUIPMENT CONTAINS ELECTROSTATIC DISCHARGE SENSITIVE (ESDS) DEVICES. EQUIPMENT, MODULES, AND ESDS DEVICES MUST BE HANDLED IN ACCORDANCE WITH SPECIAL ESDS HANDLING PROCEDURES.

5.3.4.1 BEZEL REMOVAL

A. Loosen the two set screws in the "HDG" and "CRS" knobs and remove the knobs.
B. The bezel assembly is held to the front display assembly by four screws. Removal of these four screws allows the bezel assembly to slide forward off of the knob shafts. Exercise caution when handling the lighting components as these parts are easily scratched.
5.3.4.2 P.C. BOARD REMOVAL
A. Remove four screws that hold the P. C. board to the front display assembly.
B. Remove the two keying pins from the connector at the back of the P. C. board. Note the location of these two keying pins and replace them in their original location.
C. The board may now be rotated towards the left-hand side of the unit.
D. If further removal of the board is required, tag and unsolder all wires from the board.
5.3.4.3

REAR PLATE REMOVAL
A. Remove the two keying pins from both connectors that are fastened to the rear plates. Note the relative location of these four keying pins and replace them in their original location.
B. Remove two screws that fasten the rear plate to the glideslope plate.
C. Remove the one screw that holds the rear plate to the synchro gear plate.
D. Spring the glideslope arm over the pivot pin on the right-hand side of the rear plate. Exercise caution when removing the glideslope arm and bend the arm only the required amount to lift it off of the pivot pin.
E. The rear plate assembly may now be removed from the unit.

5.3.4.4 GLIDESLOPE PLATE REMOVAL

A. Remove the rear plate as outlined in Section 5.3.3.3.
B. Remove one screw and remove the photo detector housing from the glideslope plate.
C. Mark the top of the shaft and the hub of the glideslope arm to indicate relative rotational alignment of the two parts.
D. Loosen the two set screws in the hub of the glideslope arm and remove the glideslope arm from the unit. Exercise caution when removing the glideslope arm to prevent over bending of the part,
E. Remove the two screws between the synchro plate and the glideslope plate and remove the glideslope plate from the unit.
F. If complete freedom from the main unit is desired of the glideslope plate then tag and unsolder the seven wires between the glideslope plate and the P. C. board.
5.3.4.5 SYNCHRO PLATE REMOVAL
A. Remove the rear plate and glideslope plate as outlined in paragraphs 5.3.3.3 and 5.3.3.4.
B. Press the 029-00255-0000 36-tooth gear off the back of the drive shaft.
C. Remove the two screws that hold the P. C. board to the synchro plate.
D. Remove the four screws that hold the synchro plate to the front frame and remove the synchro plate from the unit.

5.3.4.6 FRONT FRAME AND YOKE REMOVAL

A. Remove the bezel and P. C. board assemblies as outlined in paragraphs 5.3.3.1 and 5.3.3.2.
B. Remove the four screws that hold the front frame to the synchro plate, spread the glideslope arms slightly, and then slide the front frame forward approximately $1 / 2$ inch.
C. Press the 029-00255-0000 36-tooth gear off the back of the drive shaft.
D. While manually supporting the yoke assembly slide both the front frame and yoke assemblies forward until they are free of the main unit.
E. The yoke assembly is held captive in the front frame assembly by the course pointer and tail. The course pointer and tail are glued to the NAV mask. To separate the yoke assembly from the front frame, remove the course pointer and tail, then slide the yoke assembly back from the front frame.
5.3.4.7 SPECIAL REASSEMBLY INSTRUCTIONS
A. When reassemblying any subassembly, refer to the assembly drawing (Section VI), and adhere to all of the notes and instructions on that drawing.
B. In general there should be at least . 015 inches clearance between moving components and other objects within the unit.
C. Make certain that the four brushes are properly aligned and making electrical contact with the four slip rings on the yoke assembly.
D. Any parts that are held together with adhesive must be cleaned prior to applying any adhesive.
E. When the yoke assembly is positioned, it must not be located such that it compresses the clutch wave washer between the heading select and heading gears.
F. The lighting components within the bezel should be handled by the edges of these parts only.
If cleaning is necessary, luke warm water and mild soap may be used. Rinse thoroughly and dry with a soft lint free cloth. Do not wipe any more than necessary as these parts are easily scratched.
G. After the P. C. board has been installed, check the shutter of both the course and heading select pickoffs to insure that they are riding in their proper cam locations.
H. Realign the resolver, synchros, and optical pickoffs per the instructions given in Section 5.2.

5.4 TROUBLESHOOTING

The troubleshooting diagram, refer to figure 5-2, is intended as a guide for the technician in isolating a malfunction of the unit. Before troubleshooting the unit, a thorough understanding of the Theory of Operation should be accomplished. The technique of fault finding through elimination should be used as a basis in locating the trouble area.
Before any troubleshooting procedures are applied, perform a bench check to determine if the unit is the source of the problem. If it is, determine in which assembly the problem lies. Once the problem section has been determined, consult the troubleshooting flowchart and schematics for information pertaining to repair.

ILLUSTRATED PARTS LIST

6.1 General

The Illustrated Parts List (IPL) is a complete list of assemblies and parts required for the unit. The IPL also provides for the proper identification of replacement parts. Individual parts lists within this IPL are arranged in numerical sequence starting with the top assembly and continuing with the sub-assemblies. All mechanical parts will be separated from the electrical parts used on the sub-assembly. Each parts list is followed by a component location drawing.

Parts identified in this IPL by Honeywell part number meet design specifications for this equipment and are the recommended replacement parts. Warranty information concerning Honeywell replacement parts is contained in Service Memo \#1, P/N 600-08001-00XX.

Some part numbers may not be currently available. Consult the current Honeywell catalog or contact a Honeywell representative for equipment availability.

6.2 Revision Service

The manual will be revised as necessary to reflect current information.
6.3 List of Abbreviations

Abbreviation	Name
B	Motor or Synchro
C	Capacitor
CJ	Circuit Jumper
CR	Diode
DS	Lamp
E	Voltage or Signal Connect Point
FL	Fuse
FT	Filter
I	Feedthru
J	Integrated Circuit
L	Jack or Fixed Connector
M	Inductor
P	Meter

Table 1
Abbreviations

Abbreviation	Name
Q	Transistor
R	Resistor
RT	Thermistor
S	Switch
T	Transformer
TP	Test Point
U	Component Network, Integrated Circuit,
V	Circuit Assembly
W	Photocell/Vacuum Tube
Y	Waveguide

Table 1 (Continued)
Abbreviations

The above is only a sample. The actual format and style may vary slightly. A 'Find Number' column, when shown, references selected items on the BOM's accompanying Assembly Drawing. This information does not apply to every BOM. Therefore, a lack of information in this column, or a lack of this column, should not be interpreted as an omission.

Figure 6-1
Sample Parts List

THIS PAGE IS RESERVED

6.5 KI 525 FINAL ASSEMBLY

066-03029-0000 Rev. 12
066-03029-0001 Rev. 12

SYMBOL	PART NUMBER	FIND N0	DESCRIPTION	UM	0000	0001
	012-01005-0004		TAPE MYLAR 2.250 W	IN	7.20	7.20
	016-01005-0000		EPOXY KIT 3M 40CC	AR	. 00	. 00
	016-01008-0004		GLYPTAL 7526 BL	AR	. 00	00
	016-01095-0000		ADHESIVE \#7085	AR	. 00	. 00
	025-00018-0000		WIRE 26 BLK	IN	3.60	3.60
	025-00018-0015		WIRE 26 BN/GN	IN	1.20	1.20
	025-00018-0016		WIRE 26 BN/BU	IN	3.60	3.60
	025-00018-0020		WIRE 26 RD/BK	IN	1.20	1.20
	025-00018-0021		WIRE 26 RD/BN	IN	3.60	3.60
	025-00018-0022		WIRE 26 RED	IN	3.60	3.60
	025-00018-0036		WIRE 26 OR/BU	IN	3.60	3.60
	025-00018-0079		WIRE $26 \mathrm{VI} / \mathrm{WH}$	IN	4.80	4.80
	025-00018-0080		WIRE 26 GY/BK	IN	4.80	4.80
	025-00018-0081		WIRE 26 GY/BN	IN	4.80	4.80
	025-00018-0082		WIRE 26 GY/RD	IN	3.60	3.60
	025-00018-0098		WIRE 26 WH/GY	IN	3.60	3.60
	029-00257-0000		GEAR SPUR 72T/64DP	EA		1.00
	047-02795-0001		ENCLOSURE W/F	EA	1.00	1.00
	047-02802-0002		ARM, GLIde Slope	EA	1.00	1.00
	047-02893-0001		GS POINTER W/FINIS	EA	2.00	2.00
	057-01483-0001		SERIAL NUMBER TAG	EA	1.00	1.00
	073-00070-0007		KNOB HDG	EA	1.00	1.00
	073-00070-0008		KNOB CRS	EA	1.00	1.00
	073-00493-0001		CLMP SYNC	EA		. 00
	088-00355-0002		HOUSING PHTODET	EA	1.00	1.00
	089-05899-0003		SCR PHP 2-56×3/16	EA	4.00	4.00
	089-05899-0005		SCR PHP \#2-56X5/16	EA	1.00	1.00
	089-05903-0005		SCR PHP 4-40X5/16	EA	8.00	8.00
	089-06022-0005		SCR SHC 2-56X5/16	EA		2.00
	089-06024-0004		SCR SHC 4-40X1/4	EA	1.00	1.00
	089-06081-0003		SCR PHP 4-40×3/16	EA	3.00	3.00
	089-06200-0006		SCR SET 2-56×3/16	EA	2.00	4.00
	089-06204-0004		SCR SET 4-40X1/8	EA	4.00	4.00
	090-00233-0000		PAD CONN SHORTING	EA	1.00	1.00
	134-05006-0000		RES LT SEN 7.5K	EA	1.00	1.00
	148-00029-0000		SYNCHRO XMTR	EA		1.00
	150-00003-0010		TUBING TFLN 24AWG	IN	12.00	12.00
	150-00018-0010		TUBING SHRINK WHT	IN	9.60	10.80
	200-00629-0000		PC BD ASSY	EA	1.00	1.00
	200-00631-0000		REAR GEAR PLT ASSY	EA	1.00	1.00
	200-00632-0000		FRONT DISPLAY ASSY	EA	1.00	1.00
	200-00633-0000		BEZEL ASSEMBLY	EA	1.00	1.00
	200-00643-0000		GS PLATE ASSY	EA	1.00	1.00

THIS PAGE IS RESERVED

FIGURE 6-2 KI 525 FINAL ASSEMBLY (Dwg. 300-00831-0000/0001 R-12)

FIGURE 6-2A KI 525 FINAL ASSEMBLY (Dwg. 300-00831-0000/0001 Old Revision)

6.6 KI 525 BEZEL ASSEMBLY

200-00633-0000 Rev. 12

SYMBOL	PART NUMBER	FIND NO	DESCRIPTION	UM
REF1	$300-00830-0000$	BEZEL ASSEMBLY	RF	.000
	$012-05028-0001$	GLASS COVER	EA	1.00
	$016-01008-0004$	GLYPTAL 7526 BL	AR	.00
	$016-01082-0000$	DC RTV 3145	AR	.00
	$047-02638-0001$	CLAMP HLD DN	EA	2.00
	$073-00370-0003$	BEZEL	EA	1.00
	$088-00356-0001$	LIGHT WEDGE W/ C	EA	1.00
	$089-05899-0003$	SCR PHP $2-56 \times 3 / 16$	EA	2.00
	$187-01095-0000$	GASKET FRONT	EA	2.00

THIS PAGE IS RESERVED

FIGURE 6-3 KI 525 BEZEL ASSEMBLY
(Dwg. 300-00830-0000 R-AB)

6.7 KI 525 FRONT DISPLAY ASSEMBLY

200-00632-0000 Rev. CA

SYMBOL	PART NUMBER	FIND No	DESCRIPTION	UM	0000
REF1	300-00829-0000		FRONT DISPLAY ASSY	RF	. 00
	016-01008-0004		GLYPTAL 7526 BL	AR	. 00
	016-01013-0000		VAC GREASE DC 976	AR	. 00
	016-01016-0000		MOLYKOTE G-N PASTE	AR	. 00
	016-01039-0000		BLK BRSHG LCQR	AR	. 00
	016-01122-0000		EPOXY DEVCON 14250	AR	. 00
	029-00261-0000		GEAR SPUR 40T/64DP	EA	1.00
	029-00264-0001		GEAR FACE 64P	EA	1.00
	029-00265-0000		GEAR CRWN 64P	EA	1.00
	029-00291-0000		GEAR 20T/64DP	EA	1.00
	029-00292-0000		GEAR 18T/64DP	EA	1.00
	029-00435-0000		GEAR 36T	EA	1.00
	029-00435-0001		GEAR 36T	EA	2.00
	029-00444-0000		GEAR 24T	EA	1.00
	047-02749-0003		THRUST WSHR 1.685	EA	1.00
	047-02851-0000		SHIM WASHER . 500	EA	4.00
	047-02851-0002		SHIM WASHER . 450	AR	. 00
	047-04390-0000		STOP YOKE	EA	1.00
	076-00681-0003		COLLAR, \#4-40 W/FI	EA	2.00
	076-00684-0000		SHAFT HDG SELECT	EA	1.00
	076-00685-0000		SHAFT CRS SELECT	EA	1.00
	076-00686-0000		SHAFT DRIVE	EA	1.00
	088-00348-0002		MASK	EA	1.00
	088-00349-0001		POINTER COURSE	EA	1.00
	088-00350-0001		TAIL COURSE	EA	1.00
	088-00719-0000		SHAFT BUSHING 525A	EA	3.00
	089-05623-0003		SCR PHP 0-80×3/16	EA	4.00
	089-05853-0006		SCR SET 2-56×3/16	EA	2.00
	089-05857-0006		SCR SET 4-40×3/16	EA	4.00
	089-05903-0004		SCR PHP 4-40X1/4	EA	2.00
	089-05903-0005		SCR PHP 4-40×5/16	EA	4.00
	089-06022-0005		SCR SHC 2-56X5/16	EA	2.00
	089-06200-0004		SCR SET 2-56X1/8	EA	1.00
	089-06204-0010		SCR SET 6-32×5/16	EA	3.00
	089-06414-0005		SCR PHP 2-28X5/16	EA	4.00
	089-08012-0037		WSHR INTL LK \#2	EA	2.00
	089-08054-0030		WSHR FLT STD . 128	EA	10.00
	089-08077-0030		WASHER	AR	. 00
	089-08162-0000		WSHR FLT RVT . 068	AR	. 00
	089-08204-0001		WSHR SPR . 390	EA	2.00
	090-00019-0000		RING RTNR . 125	EA	2.00
	090-00036-0001		RING RTNR . 094	EA	1.00
	090-00188-0000		GRIP RING	EA	2.00
	200-00622-0000		FLAG MCHNSM ASSY	EA	1.00
	200-00622-0001		FLAG MCHNSM ASSY	EA	1.00
	200-00624-0000		DIFF CARRIER ASSY	EA	1.00
	200-00625-0000		YOKE ASSY	EA	1.00

```
SYMBOL PART NUMBER FIND NO DESCRIPTION UM 0000
    200-00626-0000 SYNC GEAR PLT ASSY EA 1.00
    200-00627-0000 FRONT FRAME ASSY EA 1.00
```


FIGURE 6-4 KI 525 FRONT DISPLAY ASSEMBLY (Dwg. 300-00829-0000 R-CB, Sheet 1 of 2)

FIGURE 6-4 KI 525 FRONT DISPLAY ASSEMBLY
(Dwg. 300-00829-0000 R-CB, Sheet 2 of 2)
notes:
2. FOR COMPLETE DESCRIPTION OF PARTS SEE B/M $200-0632$-O0,01,-02,-03,-O4

ASSEVERY
OF Topave.
3. DRive shaft fig. 3) wust be as

$A S$ REMPRD

4. Assembly to be marked prid ol-otiol-oxoo in approximate area shown

FIGURE 6-4A KI 525 FRONT DISPLAY ASSEMBLY (Dwg. 300-00829-0000 Old Revision, Sheet 1 of 2)

HEADING SELECT SHAFT ASSEMBLY
FIGURE I (SEE NOTE 2)

COURSE SELECT SHAFT ASSEMBLY
FIGURE 2 (SEE NOTE 3)

vores
1- For complete nescription of parts see b/M 200-0632-00
2- reading select shaft (fig: 1) must be assembiled as followed
A - Slide gear ($029-0259-00$) on to shaft (076-0684-00) and locate as PER DRAWING. APPLY AdHESIVE ($016-1029-00$) to gear and Shaft as
B - after adhesine has cured insert shaft and gear into front frame assy (200-0627-00) with gean to rfar of init, attach petahimig RTVG (0090-0041-00) TO GROVVE IN SHAFT.

- course sflect shaft (fig. 2) must be assemblled as follows

A - SLIDE Gear ($029-0261-00$) onto shaft ($076-0685-00$) and locate as as per spec.
 Eront frame assembly (200-0627-00) far enoug to allow gear end of SHAFT TO be inserted into sychro plate,
against disp broperiy positioned slide wavy washer and collar snug

- drive suaft (fis in mist be assembled as follows.
 255 029-0291-00 AND (029-0292-00), (NOTE-GEAR MUST be oN Froit side of plate.
B - INSERT GEAR (029-(26nnoo \& 029-0255-00) AND WASHER (047-2851-01) INTO POCKET IN FRONT FRRME AND PRESS SHAFT (076-068 $6-00$) TH them as shown in fig. 3.

ov - No adhesive shat pexail onate as shown in fig. 3
6-apply glyptal (016-1008-04) to all screws.
- miring assembiy extreme care shall be taken to prevent scratching or marring finish on mask (088-0348-01) and azimuth dial on front frame assembly (200-0627-00).

8. - COIRSE POINTER (088-0349-01) AND TALL (088-0350-01) ARE NOT ATTACHED UNTLI YOKE ASSEMBLY ($200-0625-00$) AND FRONT FRAME ASSEMBLY (200-0627-00 are assembled. after assembly apply adequate amount of adhesive
$(016-1029-00)$ to rear of pointer and tail avd install on nav mask (088 - 0347 -01). AFTER ADHESIVE HAS CURED, TOUCH UP ALL AREAS WHERE THE ADHESIVE IS VISIBLE WITH BLACK BRUSHING LACQUER (016 -1039-00) COURSE PONTTER (O88-0349-01) AND TAIL (088 -0350-01) WILL BE SUPPLIED with ass'y 200-0625-00 but not installed until this level of ass'y,
. when securing gears to shafts, clean both surfaces with chlorathane before applying adeessive.

FIGURE 6-4A KI 525 FRONT DISPLAY ASSEMBLY
(Dwg. 300-00829-0000 Old Revision, Sheet 2 of 2)

6.8 KI 525 FRONT FRAME ASSEMBLY

200-00627-0000 Rev. AA

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
REF100	300-00824-0000		ASSEMBLY, FRONT FR	RF	. 00
	016-01103-0000		MOLYKOTE 33 MED DC	AR	. 00
	047-02749-0001		THRUST WSHR 2.140	EA	2.00
	047-02749-0002		THRUST WSHR 1.970	EA	1.00
	047-02749-0004		THRUST WASHER 2.14	EA	1.00
	047-02807-0001		WAVY WASHER W/HT	EA	1.00
	073-00216-0003		FRAME FRONT	EA	1.00
	088-01069-0002		DIAL AZIMUTH W/SS	EA	1.00
	090-00210-0000		RTNG RING (SPECIAL	EA	1.00
	090-00227-0000		BALL STEEL	AR	. 00
	090-00230-0000		BALL STEEL	AR	. 00
	090-00339-0000		STEEL BALL	AR	. 00
	091-00203-0002		SCR FHS 0-80X. 125	EA	3.00
	200-00536-0000		HDG SELECT ASSY	EA	1.00

THIS PAGE IS RESERVED

FIGURE 6-5 KI 525 FRONT FRAME ASSEMBLY (Dwg. 300-00824-0000 R-AB)

NOTY:
1-SEE B/M 200-0627-00 FOR COMPlete DESCRIPTION of parts.
2 - Apply glyptal (016-1008-04) to all SCREWs.
3 - AFTER ASSEMBLY, THE (029-0268-01) GEAR SHOULD ROTATE WITH AN APPLIED TORQUE OF 1.3 OZ - INCHE
MAXIMUM. THERE SHALL BE NO POSITION FROM WHICH THE GEAR WILL NOT BEGIN TO ROTATE WITH THIS APPLLED TORQUES?

4 - EXERCISE CAUTION WHEN HANDLING THE HEADING SELECT GEAR ASSEMBLY (200-0536-00) AND TH
AZIMUTH DIAL ($076-0688-01$) TO INSURE THAT AZIMUTH DIAL (076-0688-01) TO 1 NSURL THAT
THEIR PAINTED SURFACES REMAIN CLEAN AND THEIR PAINTED.
UNBLEMISHED.

- WITH THE 029-0258-01 GEAR HELD STATIONARY THE

FIGURE 6-5A KI 525 FRONT FRAME ASSEMBLY

Dwg. 300-00824-0000 Old Revision)

6.9 KI 525 HEADING SELECT GEAR ASSEMBLY

200-00536-0000 Rev. AA

SYMBOL	PART NUMBER	FIND N0	description	UM	0000
REF100	300-00738-0000		ASSY, HEADING SELE	RF	. 00
	047-02743-0001		HDG SLCT MRKR W/F	EA	1.00
	092-00034-0002		RVT OH 1/32X.062	EA	2.00
	200-09731-0000		KI 525A GEAR SET,	EA	1.00

THIS PAGE IS RESERVED

NOTES:

I-FOR COMPLETE DESCRIPTION OF ITEMS SEE B/M 200-0536-00

FIGURE 6-6 KI 525 HEADING SELECT GEAR ASSEMBLY (Dwg. 300-00738-0000 R-AA)

IFOR COMPLETE DESCRIPTION OF ITEMS
SEE B/M $200-0536-00$
2-DURING AND AFTER ASSEMBLY CARE SHALL
BE USED TO PREVENT SCRATCING OR marring finish of pointer.

MOTE-MANUFACTUREO HEAD

SECTIONAL VIEW
 AFTER POLNTER HAS BEEN ATTACHED

FIGURE 6-6A KI 525 HEADING SELECT GEAR ASSEMBLY

(Dwg. 300-00738-0000 Old Revision)

6.10 KI 525 HEADING GEAR SET ASSEMBLY

200-09731-0000 Rev. -

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
REF1	300-09731-0000		KI 525A GEAR SET,	RF	. 00
	029-00267-0001		GEAR HDG SLCT 64P	EA	1.00
	029-00268-0001		GEAR HDG 64P	EA	1.00

THIS PAGE IS RESERVED

NOTES

1. this drawing defines a matched set of gears with a radial clearance as shown in addition to the radial clearance, the gears must turn freely WHEN MATED AS SHOWN WITH NO TENDENCY TO BIND.
this drawing is not complete without part list 200-09731-0000
2. protective packaging: individually package assemblies in plastic bags

6.11 KI 525 SYNCHRO PLATE ASSEMBLY

200-00626-0000 Rev. 5

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
B102	148-00028-0000		SYNCHRO VCTR RSLVR	EA	1.00
B104	148-00013-0000		SYNCHRO CONT XFMR	EA	1.00
REF100	300-00823-0000		SYNCHRO GEAR ASSY	RF	. 00
	029-00257-0000		GEAR SPUR 72T/64DP	EA	1.00
	073-00213-0001		CLAMP SYNCHRO	EA	2.00
	073-00221-0003		GEAR PLATE SYNC	EA	1.00
	073-00493-0001		CLMP SYNC	EA	2.00
	089-06022-0005		SCR SHC 2-56X5/16	EA	4.00
	089-06200-0008		SCR SET 2-56X1/4	EA	2.00

THIS PAGE IS RESERVED

FIGURE 6-8 KI 525 SYNCHRO PLATE ASSEMBLY (Dwg. 300-00823-0000 R-AA)

6.12 KI 525 YOKE ASSEMBLY

200-00625-0000 Rev. AA

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
REF100	300-00822-0000		YOKE ASSEMBLY KI52	RF	. 00
	023-00083-0000		MTR TO/FR FLAG	EA	1.00
	023-00084-0000		IND DEVIATION	EA	1.00
	047-02849-0001		CONTACT RING W/FIN	EA	4.00
	088-00346-0000		YOKE	EA	1.00
	088-00347-0002		MASK	EA	1.00
	088-00387-0000		GUARD	EA	2.00
	089-05899-0003		SCR PHP 2-56X3/16	EA	4.00
	089-07046-0004		SCR PHS 2-56X1/4	EA	4.00

THIS PAGE IS RESERVED

FIGURE 6-9A KI 525 YOKE ASSEMBLY
(Dwg. 300-00822-0000 Old Revision)

6.13 KI 525 DIFFERENTIAL CARRIER ASSEMBLY
 200-00624-0000 Rev. 1

SYMBOL	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
REF100	300-00821-0000		DIFF CARRIER ASSY	RF	. 00
	029-00256-0000		GEAR SPUR 16T/64DP	EA	2.00
	029-00262-0001		GEAR SPUR 160T/64P	EA	1.00
	047-02850-0000		SHIM WASHER	EA	4.00
	076-00693-0000		PIN SPIDER GEAR	EA	2.00

THIS PAGE IS RESERVED

FIGURE 6-10A KI 525 DIFFERENTIAL CARRIER ASSEMBLY (Dwg. 300-00821-0000 Old Revision)

6.14 KI 525 FLAG MECHANISM ASSEMBLY
 200-00622-0000 Rev. AA
 200-00622-0001 Rev. AA

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000	0001
REF100	300-00819-0000		FLAG MECHANISM AS	RF	. 00	
	016-01082-0000		DC RTV 3145	AR	1.00	1.00
	016-01114-0000		EPXY TRA-CAST 3103	AR	. 00	. 00
	019-02185-0001		COIL FLG MCH 1430T	EA	1.00	1.00
	047-02847-0006		POLE . $430 \mathrm{~W} / \mathrm{F}$	EA	1.00	1.00
	047-02847-0007		POLE . $523 \mathrm{~W} / \mathrm{F}$	EA	1.00	1.00
	047-02848-0001		SPACER POLE W/F	EA	2.00	2.00
	088-00344-0000		HSG FLAG	EA	1.00	1.00
	088-00345-0001		COVER FLAG	EA	1.00	1.00
	090-00186-0000		RETAINER RING	EA	1.00	1.00
	200-00642-0001		FLAG ASSY	EA	.	1.00
	200-00642-0003		FLAG ASSY	EA	1.00	.
	300-00819-0001		FLAG MECHANISM ASS	RF	.	. 00

THIS PAGE IS RESERVED

notes:
I FOR COMPLETE ITEM DESCRIPTION SEE B/M 200-0622-00
2 APPLY ADHESIVE (016-1114-00) INSIDE
H
ALL PARTS \& COVER (088-0345-01)
3 AFTER GRIP RING (090-0186-00) ISINSTAL
AFTER GRIP RING (O9O-OIB6-OO) ISINSTALLED
THE FLAG ASSEMBLY SHOULD HVE.OLO THE FLAG ASSEMBLY SHOUL HAEE.OLO
INCHES AXIALCLEARANCE BETWEEN TH
COVER COVER (O88-0345-OI) AND GRIP RING, 4 AFTER ASSEMBLY THE D.C.RESISTANCE BETWEEN 5. ADD A 3/8 INCH DIAMETER SERVICE LOOP TO THE LEADS COMING FROM THE COIL
6. NOTE DELETED

[^0] fLow down shaft.

FIGURE 6-11 KI 525 FLAG MECHANISM ASSEMBLY (Dwg. 300-00819-0000 R-AB)

FIGURE 6-11A KI 525 FLAG MECHANISM ASSEMBLY
(Dwg. 300-00819-0000 Old Revision)

FIGURE 6-12 KI 525 FLAG MECHANISM ASSEMBLY (Dwg. 300-00819-0001 R-AB)

FIGURE 6-12A KI 525 FLAG MECHANISM ASSEMBLY (Dwg. 300-00819-0001 Old Revision)

6.15 KI 525 FLAG ASSEMBLY

$$
\begin{array}{ll}
200-00642-0001 & \text { Rev. AB } \\
200-00642-0003 & R e v . ~ A A
\end{array}
$$

SYMBOL	PART NUMBER	Find No	DESCRIPTION	UM	0001	0003
REF100	300-05545-0000		NAV FLAG ASSY	RF		. 00
	013-00017-0000		MAGNET	EA	1.00	1.00
	016-01122-0000		EPOXY DEVCON 14250	AR	1.00	1.00
	047-02841-0002		FLAG PWR	EA	1.00	
	047-10437-0003		FLAG	EA		1.00
	300-00838-0001		FLAG ASSY	RF	. 00	

$$
\begin{array}{ll}
200-00642-0000 & \text { Rev. AA } \\
200-00642-0002 & \text { Rev. AA }
\end{array}
$$

SYMBOL PART NUMBER FIND NO DESCRIPTION UM 00000002
013-00017-0000 MAGNET EA 1.00 1.00
016-01122-0000 EPOXY DEVCON 14250 AR 1.001 .00
$\begin{array}{lll}047-02841-0001 & \text { FLAG } & \text { EA } 1.00 \\ 047-02841-0003 & \text { FLAG } & \text { EA }\end{array}$

THIS PAGE IS RESERVED

NOTES:

1. HOLES MUST BE CONCENTRIC.
2. NO ADHESIVE SHALL REMAIN IN BORE AFTER ASSEMBLY.

THIS DRAWING NOT COMPLETE WITHOUT PARTS LIST 200-00642-0003.

FIGURE 6-13 FLAG ASSEMBLY
(Dwg. 300-05545-0000 Rev. AA)

THIS PAGE IS RESERVED

NOTES:

1-HOLES MUST BE CONCENTRIC
2-NO ADHESIVE SHALL REMAIN IN BORE AFTER ASSEMBLY
3-SEE B/M 200-0642-00 FOR COMPLETE PART DESCRIFTION.

THIS PAGE IS RESERVED

NOTES:
I-HOLES MUST BE CONCENTRIC
2-NO ADHESIVE SHALL REMAIN IN BORE AFTER ASSEMBLY
3-AFTER MAGNET AND FLAG ARE ASSEMBLED APPLY OI6-1029-00 (EPOXY POTTING KIT OOI BA) TO REAR OF ASSEMBLY AS INDICATED ON DRAWING. CAUTION - NO EPOXY SHALL APPEAR ON FRONT OF ASSEMBLY.

FIGURE 6-14A FLAG ASSEMBLY
(Dwg. 300-00838-0000 Old Revision)

THIS PAGE IS RESERVED

NOTES:
1-HOLES MUST BE CONCENTRIC
2-NO ADHESIVE SHALL REMAIN IN BORE AFTER ASSEMBLY.
3-SEE B/M 200-0642-OI FOR COMPLETE PART DESCRIPTION.

FIGURE 6-15 FLAG ASSEMBLY
(Dwg. 300-00838-0001 Rev. AA)

THIS PAGE IS RESERVED

016-1029-00

ADHESIVE SEE NOTE 3

NOTES:
1-HOLES MUST BE CONCENTRIC
2-NO ADHESIVE SHALL REMAIN IN BORE
AFTER ASSEMBLY.
3-AFTER MAGNET AND FLAG ARE ASSEMBLED APPLY OI6-1029-OO (EPOXY POTTING KIT 001 BA) TO REAR OF ASSEMBLY AS INDICATED ON DRWG, CAUTION-NOEPOXY SHALL APPEAR ON FRONT OFASSEMBLY.

FIGURE 6-15A FLAG ASSEMBLY
(Dwg. 300-00838-0001 Old Revision)

THIS PAGE IS RESERVED

6.16 KI 525 REAR PLATE ASSEMBLY

200-00631-0000 Rev. AB

SYMB0L	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
B103	148-05035-0000		MOTOR STEPPER	EA	1.00
J102	030-02179-0000		CONN 41 PIN FEM	EA	1.00
REF100	300-00828-0000		ASSEMBLY, REAR GEA	RF	. 00
	016-01007-0005		LOCTITE 222	AR	1.00
	016-01268-0000		LOCTITE 271	AR	1.00
	029-00352-0000		GEAR 12/35T	EA	2.00
	029-00404-0000		GEAR 14T	EA	1.00
	030-01007-0000		TAB LOCKING	EA	2.00
	047-04782-0002		PLATE W/F \& PVT	EA	1.00
	073-00222-0003		GEAR PLATE REAR	EA	1.00
	076-00820-0001		SPACER - COVER	EA	1.00
	089-05903-0003		SCR PHP 4-40×3/16	EA	2.00
	089-06022-0004		SCR SHC 2-56X1/4	EA	2.00
	090-00186-0000		RETAINER RING	EA	2.00
	150-00018-0010		TUBING SHRINK WHT	IN	1.20

THIS PAGE IS RESERVED

FIGURE 6-16 KI 525 REAR PLATE ASSEMBLY

note

FIGURE 6-16A KI 525 REAR PLATE ASSEMBLY

(Dwg. 300-00828-0000 Old Revision)

6.17 KI 525 P.C. BOARD ASSEMBLY

200-00629-0000 Rev. 18

SYMBOL	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
C101	111-00001-0026		CAP CR .33UF 50V	EA	1.00
C104	111-00001-0030		CAP CR .68UF 50V	EA	1.00
C105	111-00001-0028		CAP CR .47UF 50V	EA	1.00
C108	096-01030-0005		CAP TN 10UF 10\%20V	EA	1.00
C109	096-01030-0005		CAP TN 10UF 10\%20V	EA	1.00
C110	096-01074-0002		CAPACITOR	EA	1.00
C115	111-00001-0000		CAP CR . O1UF 50V	EA	1.00
C116	111-00001-0030		CAP CR .68UF 50V	EA	1.00
C117	111-00001-0030		CAP CR . 68UF 50V	EA	1.00
C119	111-00001-0006		CAP CR . 47 UF 50 V	EA	1.00
C120	111-02821-0051		CAP MC 820PF100V10	EA	1.00
C121	113-03121-0000		CAP DC 120PF 500V	EA	1.00
C122	113-03121-0000		CAP DC 120PF 500V	EA	1.00
C123	113-03121-0000		CAP DC 120PF 500V	EA	1.00
C124	111-00001-0012		CAP CR . 047UF 50V	EA	1.00
C125	111-00001-0012		CAP CR .047UF 50V	EA	1.00
CJ101	026-00018-0001		WIRE CKTJMPR 24AWG	EA	1.00
CJ102	026-00018-0001		WIRE CKTJMPR 24AWG	EA	1.00
CJ105	026-00018-0001		WIRE CKTJMPR 24AWG	EA	1.00
CJ106	026-00018-0001		WIRE CKTJMPR 24AWG	EA	1.00
CR101	007-06023-0000		DIO G 1N277	EA	1.00
CR102	007-06023-0000		DIO G 1N277	EA	1.00
CR103	007-06029-0000		DIO S 1N457A	EA	1.00
CR104	007-05045-0009		DIO Z 1/4M5.1AZ5	EA	1.00
CR105	007-05044-0012		DIO Z 1N5530B 10V	EA	1.00
CR106	007-06029-0000		DIO S 1N457A	EA	1.00
CR107	007-06085-0000		DIO HC 1N5711	EA	1.00
CR108	007-05045-0009		DIO Z 1/4M5.1AZ5	EA	1.00
CR109	007-06029-0000		DIO S 1N457A	EA	1.00
CR110	007-05044-0012		DIO Z 1N5530B 10V	EA	1.00
CR111	007-07004-0001		SOLID STATE LAMP	EA	1.00
CR114	007-05051-0007		DIO Z 1N825A	EA	1.00
CR115	007-07004-0000		DIO L 5082-4480	EA	1.00
CR116	007-06029-0000		DIO S 1N457A	EA	1.00
CR119	007-05011-0017		DIO Z 11V 1W 5\%	EA	1.00
CR120	007-06029-0000		DIO S 1N457A	EA	1.00
CR121	007-06029-0000		DIO S 1N457A	EA	1.00
CR122	007-06029-0000		DIO S 1N457A	EA	1.00
CR123	007-06029-0000		DIO S 1N457A	EA	1.00
CR124	007-06029-0000		DIO S 1N457A	EA	1.00
CR125	007-06029-0000		DIO S 1N457A	EA	1.00
CR126	007-06029-0000		DIO S 1N457A	EA	1.00
CR127	007-05044-0009		DIO Z 1N5527B	EA	1.00
CR128	007-05044-0009		DIO Z 1N5527B	EA	1.00
CR129	007-06029-0000		DIO S 1N457A	EA	1.00
CR130	007-06029-0000		DIO S 1N457A	EA	1.00
DS101	037-00028-0006		LMP 5640 T1-1/4 14	EA	1.00
DS102	037-00028-0006		LMP 5640 T1-1/4 14	EA	1.00
Rev 7, July/2001			15620M07.JA		

SYMBOL	PART NUMBER	FIND N0	DESCRIPTION	UM	0000
I101	120-03053-0010		IC LM2904 S0 PKG	EA	1.00
I102	120-03053-0010		IC LM2904 SO PKG	EA	1.00
I103	120-03052-0007		IC LM224D	EA	1.00
I105	120-03052-0007		IC LM224D	EA	1.00
J101	030-02152-0000		CONN 24P MALE	EA	1.00
Q104	007-00026-0003		XSTR S NPN 2 N3416	EA	1.00
Q109	007-00038-0000		XSTR S NPN 2N3053	EA	1.00
R104	131-00391-0023		RES CF 390 QW 5\%	EA	1.00
R105	131-00391-0023		RES CF 390 QW 5\%	EA	1.00
R106	131-00273-0013		RES CF 27K EW 5\%	EA	1.00
R107	131-00393-0013		RES CF 39K EW 5\%	EA	1.00
R108	131-00222-0013		RES CF 2.2K EW 5\%	EA	1.00
R109	132-00107-0059		RES WW 130 3.25W5\%	EA	1.00
R110	131-00102-0033		RES CF 1K HW 5\%	EA	1.00
R111	136-01003-0062		RES PF 100K EW 1\%	EA	1.00
R112	136-01052-0062		RES PF 10.5K EW 1\%	EA	. 10
R112	136-01072-0062		RES PF 10.7K EW 1\%	EA	. 10
R112	136-01102-0062		RES PF 11K EW 1\%	EA	. 10
R112	136-01132-0062		RES PF 11.3K EW 1\%	EA	10
R112	136-01152-0062		RES PF 11.5K EW 1\%	EA	. 10
R112	136-01182-0062		RES PF 11.8K EW 1\%	EA	. 10
R112	136-01212-0062		RES PF 12.1K EW 1\%	EA	. 10
R113	136-02211-0062		RES PF 2.21K EW 1\%	EA	1.00
R114	131-00242-0033		RES CF 2.4K HW 5\%	EA	1.00
R115	131-00102-0013		RES CF 1K EW 5\%	EA	1.00
R116	131-00364-0013		RES CF 360K EW 5\%	EA	1.00
R117	136-01003-0062		RES PF 100K EW 1\%	EA	1.00
R118	136-01003-0062		RES PF 100K EW 1\%	EA	1.00
R119	131-00181-0023		RES CF 180 QW 5\%	EA	1.00
R120	131-00181-0023		RES CF 180 QW 5\%	EA	1.00
R121	136-02492-0062		RES PF 24.9K EW 1\%	EA	1.00
R122	136-02492-0062		RES PF 24.9K EW 1\%	EA	1.00
R123	136-01001-0062		RES PF 1K EW 1\%	EA	1.00
R124	136-02003-0062		RES PF 200K EW 1\%	EA	1.00
R125	136-05111-0062		RES PF 5.11K EW 1\%	EA	1.00
R126	136-01101-0062		RES PF 1.10K EW 1\%	EA	1.00
R127	136-05111-0062		RES PF 5.11K EW 1\%	EA	1.00
R128	136-02003-0062		RES PF 200K EW 1\%	EA	1.00
R129	136-05112-0062		RES PF 51.1K EW 1\%	EA	1.00
R130	136-04752-0062		RES PF 47.5K EW 1\%	EA	1.00
R131	131-00204-0013		RES CF 200K EW 5\%	EA	1.00
R133	131-00181-0023		RES CF 180 QW 5\%	EA	1.00
R134	131-00333-0013		RES CF 33K EW 5\%	EA	1.00
R135	136-02001-0062		RES PF 2K EW 1\%	EA	1.00
R136	136-02001-0062		RES PF 2K EW 1\%	EA	1.00
R137	136-03013-0062		RES PF 301K EW 1\%	EA	1.00
R138	136-05111-0062		RES PF 5.11K EW 1\%	EA	1.00
R139	136-01101-0062		RES PF 1.10K EW 1\%	EA	1.00
R140	136-05111-0062		RES PF 5.11K EW 1\%	EA	1.00
R141	136-03013-0062		RES PF 301K EW 1\%	EA	1.00
R142	131-00623-0013		RES CF 62K EW 5\%	EA	1.00
R143	131-00113-0013		RES CF 11K EW 5\%	EA	1.00

SYMBOL	PART NUMBER	FIND NO	DESCRIP	PTION	UM	0000
R144	131-00153-0013		RES CF	15K EW 5\%	EA	1.00
R145	136-02553-0062		RES PF	255K EW 1\%	EA	1.00
R146	136-01333-0062		RES PF	133K EW 1\%	EA	1.00
R146	136-01373-0072		RES PF	137K QW 1\%	EA	1.00
R147	133-00100-0074		RES VA	200K QW 10\%	EA	1.00
R148	136-02553-0062		RES PF	255K EW 1\%	EA	1.00
R149	131-00911-0013		RES CF	910 EW 5\%	EA	1.00
R150	131-00114-0013		RES CF	110K EW 5\%	EA	1.00
R151	131-00513-0013		RES CF	51K EW 5\%	EA	1.00
R153	131-00222-0023		RES CF	2.2K QW 5\%	EA	1.00
R154	132-00105-0053		RES WW	91 1.5W 5\%	EA	1.00
R160	131-00364-0013		RES CF	360K EW 5\%	EA	1.00
R161	131-00132-0013		RES CF	1.3K EW 5\%	EA	1.00
R162	131-00753-0013		RES CF	75K EW 5\%	EA	1.00
R164	131-00513-0013		RES CF	51K EW 5\%	EA	1.00
R165	131-00104-0013		RES CF	100K EW 5\%	EA	1.00
R166	131-00683-0013		RES CF	68K EW 5\%	EA	1.00
R167	136-07502-0062		RES PF	75.0K EW 1\%	EA	1.00
R168	131-00513-0013		RES CF	51K EW 5\%	EA	1.00
R169	133-00100-0075		RES VA	250K QW 10\%	EA	1.00
R170	133-00100-0076		RES VA	500K QW 10\%	EA	1.00
R171	132-00105-0053		RES WW	91 1.5W 5\%	EA	1.00
R172	132-00106-0076		RES WW	500 2.25W5\%	EA	1.00
R173	133-00100-0072		RES VA	50K QW 10\%	EA	1.00
R174	131-00184-0013		RES CF	180K EW 5\%	EA	1.00
R175	136-06042-0062		RES PF	60.4K EW 1\%	EA	1.00
R176	136-02743-0062		RES PF	274K EW 1\%	EA	1.00
R177	136-01003-0062		RES PF	100K EW 1\%	EA	. 01
R177	136-01023-0062		RES PF	102K EW 1\%	EA	. 01
R177	136-01053-0062		RES PF	105K EW 1\%	EA	. 01
R177	136-01073-0062		RES PF	107K EW 1\%	EA	. 01
R177	136-01103-0062		RES PF	110K EW 1\%	EA	. 01
R177	136-01133-0062		RES PF	113K EW 1\%	EA	. 01
R177	136-01153-0062		RES PF	115K EW 1\%	EA	. 01
R177	136-01183-0062		RES PF	118K EW 1\%	EA	. 01
R177	136-01213-0062		RES PF	121K EW 1\%	EA	01
R177	136-01243-0062		RES PF	124K EW 1\%	EA	. 01
R177	136-01273-0062		RES PF	127K EW 1\%	EA	. 01
R177	136-01303-0062		RES PF	130K EW 1\%	EA	. 01
R177	136-01333-0062		RES PF	133K EW 1\%	EA	. 01
R177	136-01373-0062		RES PF	137K EW 1\%	EA	. 01
R177	136-01403-0062		RES PF	140K EW 1\%	EA	. 90
R177	136-01433-0062		RES PF	143K EW 1\%	EA	. 01
R177	136-01473-0062		RES PF	147K EW 1\%	EA	. 01
R177	136-01503-0062		RES PF	150K EW 1\%	EA	. 01
R177	136-01583-0062		RES PF	158K1/8W1\%	EA	. 01
R177	136-01623-0062		RES PF	162K EW 1\%	EA	01
R177	136-01653-0062		RES PF	165K EW 1\%	EA	. 01
R177	136-01693-0062		RES PF	169K EW 1\%	EA	. 01
R177	136-01743-0062		RES PF	174K EW 1\%	EA	. 01
R177	136-01783-0062		RES PF	178K EW 1\%	EA	. 01
R177	136-01823-0062		RES PF	182K EW 1\%	EA	01

SYMB0L	PART NUMBER	FIND N0	DESC	CRIPTION	UM	0000
R177	136-01873-0062		RES	PF 187K EW 1\%	EA	. 01
R177	136-01913-0062		RES	PF 191K EW 1\%	EA	. 01
R177	136-01963-0062		RES	PF 196K EW 1\%	EA	01
R177	136-02003-0062		RES	PF 200K EW 1\%	EA	. 01
R177	136-02053-0062		RES	PF 205K EW 1\%	EA	. 01
R177	136-02103-0062		RES	PF 210K EW 1\%	EA	. 01
R178	136-04873-0062		RES	PF 487K EW 1\%	EA	1.00
R179	136-07502-0062		RES	PF 75.0K EW 1\%	EA	1.00
R180	136-01433-0062		RES	PF 143K EW 1\%	EA	1.00
R181	136-04873-0062		RES	PF 487K EW 1\%	EA	1.00
R182	136-01003-0062		RES	PF 100K EW 1\%	EA	. 01
R182	136-01023-0062		RES	PF 102K EW 1\%	EA	. 01
R182	136-01053-0062		RES	PF 105K EW 1\%	EA	01
R182	136-01073-0062		RES	PF 107K EW 1\%	EA	. 01
R182	136-01103-0062		RES	PF 110K EW 1\%	EA	. 01
R182	136-01133-0062		RES	PF 113K EW 1\%	EA	. 01
R182	136-01153-0062		RES	PF 115K EW 1\%	EA	. 01
R182	136-01183-0062		RES	PF 118K EW 1\%	EA	. 01
R182	136-01213-0062		RES	PF 121K EW 1\%	EA	. 01
R182	136-01243-0062		RES	PF 124K EW 1\%	EA	. 01
R182	136-01273-0062		RES	PF 127K EW 1\%	EA	. 01
R182	136-01303-0062		RES	PF 130K EW 1\%	EA	. 01
R182	136-01333-0062		RES	PF 133K EW 1\%	EA	. 01
R182	136-01373-0062		RES	PF 137K EW 1\%	EA	. 01
R182	136-01403-0062		RES	PF 140K EW 1\%	EA	. 90
R182	136-01433-0062		RES	PF 143K EW 1\%	EA	. 01
R182	136-01473-0062		RES	PF 147K EW 1\%	EA	. 01
R182	136-01503-0062		RES	PF 150K EW 1\%	EA	. 01
R182	136-01583-0062		RES	PF 158K1/8W1\%	EA	. 01
R182	136-01623-0062		RES	PF 162K EW 1\%	EA	. 01
R182	136-01653-0062		RES	PF 165K EW 1\%	EA	. 01
R182	136-01693-0062		RES	PF 169K EW 1\%	EA	. 01
R182	136-01743-0062		RES	PF 174K EW 1\%	EA	. 01
R182	136-01783-0062		RES	PF 178K EW 1\%	EA	. 01
R182	136-01823-0062		RES	PF 182K EW 1\%	EA	. 01
R182	136-01873-0062		RES	PF 187K EW 1\%	EA	. 01
R182	136-01913-0062		RES	PF 191K EW 1\%	EA	. 01
R182	136-01963-0062		RES	PF 196K EW 1\%	EA	. 01
R182	136-02003-0062		RES	PF 200K EW 1\%	EA	. 01
R182	136-02053-0062		RES	PF 205K EW 1\%	EA	. 01
R182	136-02103-0062		RES	PF 210K EW 1\%	EA	. 01
R183	136-02743-0062		RES	PF 274K EW 1\%	EA	1.00
R184	131-00513-0013		RES	CF 51K EW 5\%	EA	1.00
R185	134-01055-0000		PTC	THERMISTOR	EA	1.00
R186	134-01055-0000		PTC	THERMISTOR	EA	1.00
R187	131-00153-0013		RES	CF 15K EW 5\%	EA	1.00
R188	131-00394-0013		RES	CF 390K EW 5\%	EA	1.00
R189	136-05112-0062			PF 51.1K EW 1\%	EA	1.00
R190	136-01433-0062		RES	PF 143K EW 1\%	EA	1.00
R191	136-05112-0062			PF 51.1K EW 1\%	EA	1.00
R192	131-00394-0013		RES	CF 390K EW 5\%	EA	1.00
R193	136-06042-0062		RES	PF 60.4K EW 1\%	EA	1.00

SYMBOL	PART NUMBER	FIND N0	DESCRIPTION	UM	0000
R194	133-00100-0076		RES VA 500K QW 10\%	EA	1.00
R195	133-00100-0076		RES VA 500K QW 10\%	EA	1.00
R196	133-00100-0076		RES VA 500K QW 10\%	EA	1.00
R197	133-00100-0076		RES VA 500K QW 10\%	EA	1.00
R198	131-00301-0023		RES CF 300 QW 5\%	EA	1.00
R199	131-00301-0023		RES CF 300 QW 5\%	EA	1.00
V101	134-05006-0002		PHOTOCELL	EA	1.00
V102	134-05006-0002		PHOTOCELL	EA	1.00
	009-05660-0060		PC BOARD	EA	1.00
	016-01008-0004		GLYPTAL 7526 BL	AR	1.00
	016-01040-0000		COATING TYPE AR	AR	. 00
	016-01122-0000		EPOXY DEVCON 14250	AR	. 00
	047-02800-0002		SHUTTER W/F	EA	2.00
	047-02844-0001		SLIP RING BRSH W/F	EA	4.00
	088-00336-0008		FLTR LAMP WHT/BLU	EA	2.00
	088-00337-0001		HSG PICK OFF	EA	2.00
	089-02326-0000		NUT TWIN 2-56	EA	2.00
	089-05899-0004		SCR PHP 2-56X1/4	EA	8.00
	089-08012-0037		WSHR INTL LK \#2	EA	8.00
	091-00210-0000		INSUL XSTR	EA	1.00
	092-05015-0006		EYE FUNN .030X. 088	EA	4.00
	150-00003-0010		TUBING TFLN 24AWG	IN	1.20
	150-00005-0010		tubing tFLN 20AWG	IN	2.00
	300-00826-0000		PCB ASSY	RF	. 00

THIS PAGE IS RESERVED

DETAIL FOR NUG (-0005) FLAUDR

(REF.)

sectron b-b

NOTES:

 SOLDER IN PLACE.
the longest lead of cri1 and cr15 is the anoom
4. TRIM FITLER (008--00336-0008) to LENGTH OF LamPS
5. THE Maximum hetaht of as is .300- aboue board
 MOUNT R71. 1255.025••OFF 日ORRo.
 Luse Miviral Topaue to Tighten screhs to auoto
. Install R77, r8z, and riz on solder stde of p.c. babro.

REWORK NOTES:
A. on back of p.c. bobro, connect j2 pin k to ez3.

-9

FIGURE 6-17 KI 525 P.C. BOARD ASSEMBLY

FIGURE 6-17A KI 525 P.C. BOARD ASSEMBLY

Dwg. 300-00826-0000 R-4

FIGURE 6-18 KI 525 P.C. BOARD SCHEMATIC
(Dwg. 002-00306-0000 R-9)

FIGURE 6-18A KI 525 P.C. BOARD SCHEMATIC
(Dwg. 002-00306-0000 R-6)

6.18 KI 525 GLIDESLOPE PLATE ASSEMBLY

200-00643-0000 Rev. AA

SYMBOL	PART NUMBER	FIND NO	DESCRIPTION	UM	0000
CR117	007-07004-0000		DIO L 5082-4480	EA	1.00
REF100	300-00839-0000		GLIDESLOPE PLATE	RF	. 00
	013-00018-0000		MAGNET	EA	1.00
	016-01013-0000		VAC GREASE DC 976	AR	. 00
	016-01122-0000		EPOXY DEVCON 14250	AR	1.00
	019-02184-0000		COIL 125T	EA	1.00
	047-04621-0003		POLE MGNT	EA	1.00
	047-04621-0005		POLE MGNT	EA	1.00
	073-00217-0002		PLATE GS	EA	1.00
	073-00941-0001		GS SUPPORT W/FIN	EA	1.00
	076-00694-0001		SHAFT MAGNET W/F	EA	1.00
	089-05107-0004		SCR, MACH, 2-56, F	EA	4.00
	089-08054-0030		WSHR FLT STD . 128	AR	. 00
	089-08170-0030		WSHR FLT STD . 128	AR	. 00
	090-00019-0000		RING RTNR . 125	EA	1.00
	147-05006-0008		BEARING BALL	EA	2.00
	150-00018-0010		TUBING SHRINK WHT	IN	12.00

THIS PAGE IS RESERVED

FIGURE 6-19 KI 525 GLIDE SLOPE PLATE ASSEMBLY
(Dwg. 300-00839-0000 R-16)

(Dwg. 300-00839-0000 Old Revision)

[^0]: 7. APPLY RTV OVER END OF SHAFT AND ROUNDED END OF RETAINER RING. BE SURE RTV DOES NO
